FIM(Field Ion Microscope)是最早達到原子解析度,也就是最早能看得到原子尺度的顯微鏡。只是要用FIM看像,樣品得先處理成針狀,可不是粗針、細針都行喔,針的末端曲率半徑約在200~1000埃。(1埃 = 10-10公尺)把樣品置於真空極佳的空間中,藉由和低溫物的接觸將其溫度降到液態氮的溫度以下。在空間中放入成像氣體,可能為He、Ne、Ar等氣體,視不同樣品而定。等以上這些看像的事前工作都準備好,我們才加給樣品正高壓使附著在樣品上的成像氣體解離成帶正電的陽離子,帶正電的氣體離子接著被電場加速射出,打到接收器訊號被放大,以電子射到螢光螢幕,我們就能在螢幕上看到一顆一顆的原子亮點。
FIM的演進
FIM是1956年Erwin W. Mueller發明。由FEM(Field Emission Microscope)發展來的。FEM的樣品同樣也針狀,在真空的環境中成像,不過樣品上我們加的是負的高壓,樣品達到足夠的負高壓時,會放出電子打到螢光幕產生亮點,而這個亮點代表的並非一顆原子,是樣品上一片區域,這個區域電子在同樣的負高壓作用下都會射出電子。因為電子在橫向上 (和樣品表面平行的方向) 速度分量造成繞射的情況,使得FEM的解析度只能達到20到25埃(要看到原子解析度至少要小於1埃)。加了成像氣體用正高壓使其解離成陽離子,並被加速射到螢幕,成像氣體比電子重,而且在低溫的情況下,其橫向速度分量小多了,提高了解析度,FIM便如此產生了!在此最初的FIM之後,有人對影像明暗對比、真空情況、樣品冷卻處理等方面漸漸改善。
其它的原子解析顯微鏡
到了1970年,又有新的看得到原子的顯微鏡出現,SEM(Scanning Electron Microscope)只是它只能看到重原子,1983年又有STM(Scanning tunneling Microscope)此種顯微鏡的樣品便不再只限制成針狀,可用來看像的樣品範圍更大了。另外還有TEM,樣品要切成一片很薄的膜,技術上比較困難,而且會將樣品結構破壞,價錢亦較昂貴。雖說原子解析技術不再被FIM獨占,但目前能有與多的研究或實驗需要靠FIM才能做,像是單獨原子,或單一原子團在特定的表面之原子運動過程。這些可都一定少不了FIM的!