化工發展史

自有史以來,化學工業一直是同發展生產力,保障人類社會生活必需品和應付戰爭等過程密不可分的。

為了滿足這些方面的需要,它最初是對天然物質進行簡單加工以生產化學品,後來是進行深度加工和仿製,以至創造出自然界根本沒有的產品。它對於歷史上的產業革命和當代的新技術革命等起著重要作用,足以顯示出其在國民經濟中的重要地位。

古代化學加工,早期化學工業,無機化工,有機化工,高分子材料,大發展時期,合成氨工業,石油化工,高分子化工,精細化工,現代化學工業,

古代化學加工

化學加工在形成工業之前的歷史,可以從18世紀中葉追溯到遠古時期,從那時起人類就能運用化學加工方法製作一些生活必需品,如制陶,釀造,染色,冶煉,制漆,造紙以及製造醫藥,火藥和肥皂等等
在中國新石器時代的洞穴中就有了殘陶片.公元前50世紀左右仰韶文化時,已有紅陶,灰陶,黑陶,彩陶等出現(見彩圖[中國新石器時期(公元前2500年)燒制的彩陶罐],[隋代(581~618)燒制的三彩陶駱駝],[西漢(公元前 206~公元25年)製作的雲紋漆]" ,[唐代(618~907)越州窯燒制的青瓷水注],[中國古代煉丹白描圖]).在中國浙江河姆渡出土文物中,有同一時期的木胎碗,外塗朱紅色生漆.商代(公元前17~前11世紀)遺址中有漆器破片戰國時代(公元前475~前221)漆器工藝已十分精美
公元前20世紀,夏禹以酒為飲料並用於祭祀.公元前25世紀,埃及用染色物包裹乾屍.在公元前21世紀,中國已進入青銅時代,公元前5世紀,進入鐵器時代,用冶煉之銅,鐵製作武器,耕具,炊具,餐具,樂器,貨幣等.鹽,早供食用,在公元前11世紀,周朝已設有掌鹽政之官.公元前7~前6世紀,腓尼基人用山羊脂和草木灰製成肥皂.公元1世紀中國東漢時,造紙工藝已相當完善
公元前後,中國和歐洲進入煉丹術,鍊金術時期.中國由於煉製長生不老藥,而對醫藥進行研究.於秦漢時期完成的最早的藥物專著《神農本草經》,載錄了動,植,礦物藥品365種.16世紀,李時珍的《本草綱目》總結了以前藥物之大成,具有很高的學術水平.此外,7~9世紀已有關於三種成分混煉法的記載,並且在宋初時火藥已作為軍用.歐洲自3世紀起迷信鍊金術,直至15世紀才由鍊金術漸轉為製藥,史稱15~17世紀為製藥時期.在製藥研究中為了配製藥物,在實驗室製得了一些化學品如硫酸,硝酸,鹽酸和有機酸.雖未形成工業,但它導致化學品製備方法的發展,為18世紀中葉化學工業的建立,準備了條件

早期化學工業

從18世紀中葉至20世紀初是化學工業的初級階段.在這一階段無機化工已初具規模,有機化工正在形成,高分子化工處於萌芽時期.

無機化工

第一個典型的化工廠是在18世紀40年代於英國建立的硫酸廠.先以硫磺為原料,後以黃鐵礦為原料,產品主要用以制硝酸,鹽酸及藥物,當時產量不大.在產業革命時期,紡織工業發展迅速.它和玻璃,肥皂等工業都大量用鹼,而植物鹼和天然鹼供不應求.1791年在法國科學院懸賞之下,獲取專利,以食鹽為原料建廠,製得,並且帶動硫酸(原料之一)工業的發展;生產中產生的氯化氫用以製鹽酸,氯氣,漂白粉等為產業界所急需的物質,
純鹼又可苛化為,把原料和副產品都充分利用起來,這是當時化工企業的創舉;用於吸收氯化氫的填充裝置,煅燒原料和半成品的旋轉爐,以及濃縮,結晶,過濾等用的設備,逐漸運用於其他化工企業,為化工單元操作打下了基礎.呂布蘭法於20世紀初逐步被索爾維法(見)取代.19世紀末葉出現電解食鹽的.這樣,整個化學工業的基礎——酸,鹼的生產已初具規模.

有機化工

紡織工業發展起來以後,天然染料便不能滿足需要;隨著鋼鐵工業,煉焦工業的發展,副產的煤焦油需要利用.化學家們以有機化學的成就把煤焦油分離為,,,,蒽,菲等.1856年,英國人由合成苯胺紫染料,後經過剖析確定天然茜素的結構為二羥基蒽醌,便以煤焦油中的蒽為原料,經過氧化,取代,水解,重排等反應,仿製了與天然茜素完全相同的產物.同樣,製藥工業,香料工業也相繼合成與天然產物相同的化學品,品種日益增多.1867年,瑞典人發明代那邁特炸藥(見),大量用於採掘和軍工.
當時有機化學品生產還有另一支柱,即乙炔化工.於1895年建立以煤與石灰石為原料,用電熱法生產電石(即)的第一個工廠,電石再經水解發生乙炔,以此為起點生產乙醛,醋酸等一系列基本有機原料.20世紀中葉發展後,電石耗能太高,大部分原有乙炔系列產品,改由為原料進行生產.

高分子材料

受熱發粘,受冷變硬.1839年美國用硫磺及加熱天然橡膠,使其交聯成彈性體,套用於輪胎及其他橡膠製品,用途甚廣,這是高分子化工的萌芽時期.1869年,美國用樟腦增塑硝酸纖維素製成塑膠,很有使用價值.1891年在法國貝桑松建成第一個人造絲廠.1909年,美國製成酚醛樹脂,俗稱電木粉,廣泛用於電器絕緣材料.
這些萌芽產品,在品種,產量,質量等方面都遠不能滿足社會的要求.所以,上述基礎有機化學品的生產和高分子材料生產,在建立起石油化工以後,都獲得很大發展.

大發展時期

從20世紀初至戰後的60~70年代,這是化學工業真正成為大規模生產的主要階段,一些主要領域都是在這一時期形成的.和石油化工得到了發展,進行了開發,逐漸興起.這個時期之初,英國和美國的等人提出的概念,奠定了化學工程的基礎.它推動了生產技術的發展,無論是裝置規模,或產品產量都增長很快.

合成氨工業

20世紀初期異軍突起,用物理化學的反應平衡理論,提出氮氣和氫氣直接合成氨的催化方法,以及原料氣與產品分離後,經補充再循環的構想,進一步解決了設備問題.因而使德國能在第一次世界大戰時建立第一個由氨生產的工廠,以應戰爭之需.合成氨原用焦炭為原料,40年代以後改為石油或天然氣,使化學工業與石油工業兩大部門更密切地聯繫起來,合理地利用原料和能量.

石油化工

1920年美國用生產,這是大規模發展石油化工的開端.1939年美國標準油公司開發了臨氫催化重整過程,這成為芳烴的重要來源.1941年美國建成第一套以為原料用制乙烯的裝置.在第二次世界大戰以後,由於化工產品市場不斷擴大,石油可提供大量廉價有機化工原料,同時由於化工生產技術的發展,逐步形成石油化工.甚至不產石油的地區,如西歐,日本等也以原油為原料,發展石油化工.同一原料或同一產品,各化工企業卻有不同的工藝路線或不同催化劑.
由於基本有機原料及高分子材料單體都以石油化工為原料,所以人們以乙烯的產量作為衡量有機化工的標誌.80年代,90%以上的有機化工產品,來自石油化工.例如,等,過去以電石乙炔為原料,這時改用氧氯化法以乙烯生產氯乙烯,用丙烯氨氧化(見)法以生產丙烯腈.1951年,以天然氣為原料,用蒸汽轉化法得到一氧化碳及氫,使得到重視,目前用於生產,,個別地區用生產.

高分子化工

高分子材料在戰時用於軍事,戰後轉為民用,獲得極大的發展,成為新的材料工業.作為戰略物質的天然橡膠產於熱帶,受阻於海運,各國皆研究.1937年德國法本公司開發獲得成功.以後各國又陸續開發了順丁,丁基,氯丁,丁腈,異戊,乙丙等多種合成橡膠,各有不同的特性和用途.方面,1937年美國 成功地合成尼龍 66(見),用熔融法紡絲,因其有較好的強度,用作降落傘及輪胎用.以後滌綸,維尼綸,腈綸等陸續投產,也因為有石油化工為其原料保證,逐漸占有天然纖維和人造纖維大部分市場.塑膠方面,繼酚醛樹脂後,又生產了,醇酸樹脂等熱固性樹脂.30年代後,品種不斷出現,如迄今仍為塑膠中的大品種,為當時優異的絕緣材料,1939年高壓用於海底電纜及雷達,低壓聚乙烯,等規聚丙烯的開發成功,為民用塑膠開闢廣泛的用途,這是齊格勒-納塔催化劑為高分子化工所作出的一個極大貢獻.這一時期還出現耐高溫,抗腐蝕的材料,如,,其中聚四氟乙烯有塑膠王之稱.第二次世界大戰後,一些也陸續用於汽車工業,還作為建築材料,包裝材料等,並逐漸成為塑膠的大品種.

精細化工

在方面,發明了活性染料,使染料與纖維以化學鍵相結合.合成纖維及其混紡織物需要新型染料,如用於滌綸的,用於腈綸的,用於滌棉混紡的活性分散染料.此外,還有用於雷射,液晶,顯微技術等特殊染料.在方面,40年代瑞士P.H.米勒發明第一個有機氯農藥之後,又開發一系列有機氯,有機磷,後者具有胃殺,觸殺,內吸等特殊作用.嗣後則要求高效低毒或無殘毒的農藥,如仿生合成的類.60年代,,發展極快,出現了一些性能很好的品種,如吡啶類除草劑,苯並咪唑殺菌劑等.此外,還有抗生素農藥(見),如中國1976年研製成的井岡黴素用於抗水稻紋枯病.醫藥方面,
在1910年法國製成606砷製劑(根治梅素的特效藥)後,又在結構上改進制成914,30年代的類化合物,甾族化合物等都是從結構上改進,發揮出特效作用.1928年,英國發現,開闢了抗菌素藥物的新領域.以後研究成功治療生理上疾病的藥物,如治心血管病,精神病等的藥物,以及避孕藥.此外,還有一些專用診斷藥物問世.擺脫天然油漆的傳統,改用,如醇酸樹脂,,丙烯酸樹脂等,以適應汽車工業等高級塗飾的需要.第二次世界大戰後,丁苯膠乳製成水性塗料,成為建築塗料的大品種.採用高壓無空氣噴塗,靜電噴塗,電泳塗裝,陰極電沉積塗裝,光固化等新技術(見),可節省勞力和材料,並從而發展了相應的塗料品種.

現代化學工業

20世紀60~70年代以來,化學工業各企業間競爭激烈,一方面由於對反應過程的深入了解,可以使一些傳統的基本化工產品的生產裝置,日趨大型化,以降低成本.與此同時,由於新技術革命的興起,對化學工業提出了新的要求,推動了化學工業的技術進步,發展了精細化工,超純物質,新型結構材料和功能材料.
規模大型化
1963年,美國凱洛格公司設計建設第一套日產540t(即600sh.t)合成氨單系列裝置,是化工生產裝置大型化的標誌.從70年代起,合成氨單系列生產能力已發展到日產 900~1350t,80 年代出現了日產1800~2700t合成氨的設計,其噸氨總能量消耗大幅度下降.乙烯單系列生產規模,從50年代年產50kt發展到70年代年產100~300kt,80年代初新建的乙烯裝置最大生產能力達年產 680kt.由於冶金工業提供了耐高溫的管材,因之毫秒裂解爐得以實現,從而提高了烯烴收率,降低了能耗.其他化工生產裝置如硫酸,燒鹼,基本有機原料,合成材料等均向大型化發展.這樣,減少了對環境的污染,提高了長期運行的可靠性,促進了安全,環保的預測和防護技術的迅速發展.
信息技術用化學品
60年代以來,大規模積體電路和電子工業迅速發展,所需電子計算機的器件材料和信息記錄材料得到發展.60年代以後,多晶矽和單晶矽的產量以每年20%的速度增長.80年代周期表中~V族的二元化合物已用於電子器件隨著半導體器件的發展,氣態源如磷化氫 (PH)等日趨重要.在大規模積體電路製備過程中,需用多種,其雜質含量小於1ppm,對水分及塵埃含量也有嚴格要求.大規模積體電路的另一種基材為,其質量和穩定性直接影響其集成度和成品率.此外,對基質材料,密封材料,焊劑等也有嚴格要求.1963年,荷蘭菲利浦公司研製盒式錄音成功後,日益普及.它不僅用於音頻記錄,視頻記錄等,更重要的是用於計算器作為外存儲器及記憶體儲器,有磁帶,磁碟,磁鼓,磁泡,磁卡等多種類型.為重要的信息材料,不僅用於光纖通信,且在工業上,醫療上作為內窺鏡材料.
高性能合成材料
60年代已開始用(俗稱尼龍),聚縮醛類(如),,以及丙烯腈-丁二烯-苯乙烯三元共聚物 ()等為結構材料.它們具有高強度,耐衝擊,耐磨,抗化學腐蝕,耐熱性好,電性能優良等特點,並且自重輕,易成型,廣泛用於汽車,電器,建築材料,包裝等方面.60年代以後,又出現,,,等.尤其是為耐高溫,耐高真空,自潤滑材料,可用於太空飛行器.其纖維可做航天服以抗輻射.聚苯並噻唑和聚苯並咪唑為耐高溫樹脂,耐熱性高,可作燒蝕材料,用於火箭.共聚,共混和複合使結構材料改性,例如多元醇預聚物與經催化反應,為尼龍聚醚嵌段共聚物,具有高衝擊強度和耐熱性能,用於農業和建築機械.另一種是以纖維增強樹脂的高分子複合材料.所用樹脂主要為環氧樹脂,不飽和聚酯,聚醯胺聚醯亞胺等所用為玻璃纖維,或(常用丙烯腈基或瀝青基).這些複合材料比重輕,比強高,韌性好,特別適用於航天,航空及其他交通運輸工具的結構件,以代替金屬,節省能量.和含氟材料也發展迅速,由於它們具有突出的耐高低溫性能,優良電性能,耐老化,耐輻射,廣泛用於電子與電器工業,原子能工業和航天工業.又由於它們具有生理相容性,可作人造器官和生物醫療器材.
能源材料和節能材料
50年代原子能工業開始發展,要求化工企業生產重水,吸收中子材料和傳熱材料以滿足需要.航天事業需要高能.固體推進劑由膠粘劑,增塑劑,氧化劑和添加劑所組成.液體高能燃料有液氫,煤油,偏二甲肼,無水肼等,氧化劑有液氧,發煙硝酸,四氧化二氮.這些產品都有嚴格的性能要求,已形成一個專門的生產行業.為了滿足節能和環保的要求,1960年美國試製成可以實用的膜,以淡化,處理工業污水,以後又擴展用於醫藥,食品工業.但這種膜易於生物降解,也易水解,使用壽命短.1970年,開發了芳香族聚醯胺反滲透膜,它能夠抗生物降解,但不能抗游離氯.1977年,改進後的複合膜用於海水淡化,每立方米淡水僅耗電23.7~28.4MJ此外,還開發了和用膜等.聚碸中空纖維氣體分離膜,用於合成氨尾氣的氫氮分離及其他多種氣體分離.這種技術比其他工業分離方法可以節能.精細以其硬度見長,用作切削工具.1971年,美國福特汽車公司及威斯汀豪斯電氣公司以β-氮化矽 (β-SiN)為燃汽透平的結構材料,運行溫度曾高達1370℃,提高功效,節省燃料,減少污染,為良好的節能材料,但經10年試驗,仍存在不少問題,尚須進一步改進.現主要用作陶瓷發動機,透平葉片,導電陶瓷,人造骨等.陶瓷的主要物系有氧化物系,如氧化鋁(AlO),氧化鋯(ZrO)等,和非氧化物系,如碳化物(SiC),氮化物(BN),氮化矽(SiN)等.80年代,為改進陶瓷的脆性,又在開發矽碳纖維增強陶瓷.
專用化學品得到進一步發展,它以很少的用量增進或賦予另一產品以特定功能,獲得很高的使用價值.例如食品和飼料添加劑,塑膠和橡膠助劑,皮革,造紙,油田等專用化學品,以及膠粘劑,防氧化劑,表面活性劑,水處理劑,催化劑等.以催化劑而言,由於電子顯微鏡,電子能譜儀等現代化儀器的發展,有助於了解催化機理,因而製備成各種專用催化劑,標誌催化劑進入了新階段.

相關詞條

熱門詞條

聯絡我們