余模同態

模論是抽象代數學的重要組成部分之一,主要研究環上的模。模的概念本質上是域上向量空間的直接推廣。早在19世紀,狄利克雷(Dirichlet,P.G.L.)就曾經考慮過多項式環上的模,20世紀20年代,諾特(Noether,E.)曾一再提出過模的重要作用。

模論的重要概念之一。指兩個模之間的一類映射。設M,N是兩個A模,f是加群M到N的群同態,若f還保持A到M,N上的運算,即對任意a∈A,f(ax)=af(x),x∈M,則稱f是模同態,也稱A同態。

余模同態(comodule homomorphism)是模同態概念到余模的引申。

基本介紹

  • 中文名:余模同態
  • 外文名:comodule homomorphism
  • 領域:模論
  • 性質:模同態到余模的引申
  • 對象:余模
  • 特點:同態
概念,模論,模同態,代數,余代數,同態,

概念

余模同態(comodule homomorphism)是模同態概念到余模的引申。設(M,ρM)和(N,ρN)是R上余代數(C,Δ,ε)上的兩個余模。若一個R模同態f:M→N使圖1交換,則f稱為M到N的余模同態。
余模同態
圖1餘模同態

模論

抽象代數學的重要組成部分之一,主要研究環上的模。模的概念本質上是域上向量空間的直接推廣。早在19世紀,狄利克雷(Dirichlet,P.G.L.)就曾經考慮過多項式環上的模,20世紀20年代,諾特(Noether,E.)曾一再提出過模的重要作用。交換環上的模在代數幾何中有重要作用,非交換環特別是群環上的模就是群的線性表示,域上的模就是向量空間。到了20世紀40年代,由於環論的需要和同調代數的興起,模論得到了進一步發展.近30年來,已成為同調代數、群論、環論、代數K理論、範疇論等分支學科研究中不可缺少的工具,並在其他數學分支,如代數幾何、拓撲學、泛函分析甚至微分方程等領域裡得到了較廣泛的套用。現代模論已成為內容豐富、文獻浩繁的代數學的一個獨立分支。

模同態

模論的重要概念之一。指兩個模之間的一類映射。設M,N是兩個A模,f是加群M到N的群同態,若f還保持A到M,N上的運算,即對任意a∈A,f(ax)=af(x),x∈M,則稱f是模同態,也稱A同態。常記為f∈HomA(M,N)或f∈Hom(M,N)。任意兩個模M,N之間總存在模同態,例如,設f(x)=0,x∈M,通常稱此同態為零同態。若N是M的子模,映射π:x→x-=x+N是AM到AM-的模同態,則稱π為自然同態。模M,N之間的模同態集HomA(M,N)是一個加群,特別地,當M=N時,記:
End(AM)=HomA(M,N),
它是一個環,稱為模M的自同態環。A是End(AM)的子環。

代數

數學的一個分支。傳統的代數用有字元 (變數) 的表達式進行算術運算,字元代表未知數或未定數。如果不包括除法 (用整數除除外),則每一個表達式都是一個含有理係數的多項式。例如: 1/2 xy+1/4z-3x+2/3. 一個代數方程式 (參見EQUATION)是通過使多項式等於零來表示對變數所加的條件。如果只有一個變數,那么滿足這一方程式的將是一定數量的實數或複數——它的根。一個代數數是某一方程式的根。代數數的理論——伽羅瓦理論是數學中最令人滿意的分支之一。建立這個理論的伽羅瓦(Evariste Galois,1811-32)在21歲時死於決鬥中。他證明了不可能有解五次方程的代數公式。用他的方法也證明了用直尺和圓規不能解決某些著名的幾何問題(立方加倍,三等分一個角)。多於一個變數的代數方程理論屬於代數幾何學,抽象代數學處理廣義的數學結構,它們與算術運算有類似之處。如: 布爾代數(BOOLEAN ALGEBRA);群 (GRO-UPS);矩陣(MATRICES);四元數(QUA-TERNIONS );向量(VECTORS)。這些結構以公理 為特徵。特別重要的是結合律和交換律。代數方法使問題的求解簡化為符號表達式的操作,已滲入數學的各分支。
設K為一交換體。把K上的向量空間E叫做K上的代數,或叫K-代數,如果賦以從E×E到E中的雙線性映射.換言之,賦以集合E由如下三個給定的法則所定義的代數結構:
——記為加法的合成法則(x,y)↦x+y;
——記為乘法的第二個合成法則(x,y)↦xy;
——記為乘法的從K×E到E中的映射(α,x)↦αx,這是一個作用法則;
這三個法則滿足下列條件:
a) 賦以第一個和第三個法則,E則為K上的一個向量空間;
b) 對E的元素的任意三元組(x,y,z),有
x(y+z)=xy+xz(y+z)x=yx+zx;
c)對K的任一元素偶(α,β)及對E的任一元素偶(x,y),有(αx)(βy)=(αβ) (xy).
設A為一非空集合. 賦予從A到K中的全體映射之集ℱ(A,K)以如下三個法則:
則ℱ(A, K)是K上的代數, 自然地被稱為從A到K中的映射代數。當A=N時, 代數ℱ(A,K)叫做K的元素序列代數。
無論是在代數還是在分析中,代數結構都是最常見到的結構之一。十九世紀前半葉末,隨著哈密頓四元數理論的建立,非交換代數的研究已經開始。在十九世紀下半葉,隨著M.S.李的工作,非結合代數出現了. 到二十世紀初,由於放棄實數體或複數體作為運算元域的限制,代數得到了重大擴展。
與外代數,對稱代數,張量代數,克利福德代數等一起,代數結構在多重線性代數中也建立了起來。

余代數

余代數是代數的對偶概念。設C是R模,Δ是一個R線性映射C→CRC,被稱為余乘法或對角映射;ε是一個R線性映射C→R,稱為余單位元或增廣。R上的余代數是指滿足以下二交換圖的三元組(C,Δ,ε):
余模同態

同態

設E與F為兩個群胚,它們的合成法則分別記為⊥與⊤. 稱從E到F中的映射f是群胚同態,如果對於E的任一元素偶(x,y),有:
設E與F為兩個么半群(兩個群),稱從E到F中的映射。f是么半群(群)的同態,如果f是群胚的同態,且E的中性元素的象是F的中性元素。(在群的情況下,後一個條件是自然滿足的,但是從加法么半群N到乘法么半群N的映射x↦0是群胚的同態, 而並不因此就是么半群的同態)。
設G為乘法群,而a為G的元素. 由關係f(n)=an所定義的從加法群Z到G中的映射f是群的同態。
設A與B為兩個環(兩個體),稱從A到B中的映射f是環(體)的同態,如果f是加法群的同態,且為乘法么半群的同態. 這就是說,對A的任一元素偶(x,y),有:
f(x+y)=f(x)+f(y)f(xy)=f(x)f(y),
並且f將A的單位元變成B的單位元。
例如,設n為非零自然數;使任一有理整數對應其對模n的剩餘類映射是從環Z到環Z/nZ上的同態。設E與F為兩個A-代數(兩個酉A-代數)。 稱從E到F中的映射f是A-代數(酉A-代數)的同態,如果它是線性映射,並且是乘法群胚(乘法么半群)的同態。
例如,設E為交換體K上的非零有限n維向量空間,而B為E的基. 則從E的全體自同態之酉代數ℒ(E)到K中元素構成的全體n階方陣之酉代數Mn (K)中的映射,如果該映射使E的任一自同態對應它在基B中的矩陣,則這一映射是酉代數的同態.
同態的概念能用抽象的方式加以推廣。

相關詞條

熱門詞條

聯絡我們