相對論(關於時空和引力的基本理論)

相對論(關於時空和引力的基本理論)

相對論(英語:Theory of relativity)是關於時空引力的理論,主要由愛因斯坦創立,依其研究對象的不同可分為狹義相對論廣義相對論。相對論和量子力學的提出給物理學帶來了革命性的變化,它們共同奠定了現代物理學的基礎。相對論極大地改變了人類對宇宙自然的“常識性”觀念,提出了“同時的相對性”、“四維時空”、“彎曲時空”等全新的概念。不過近年來,人們對於物理理論的分類有了一種新的認識——以其理論是否是決定論的來劃分經典與非經典的物理學,即“非經典的=量子的”。在這個意義下,相對論仍然是一種經典的理論。

基本介紹

  • 中文名:相對論
  • 外文名:Relativity
  • 提出者:阿爾伯特·愛因斯坦
  • 提出時間:1905年、1915年
  • 套用學科:物理學
  • 適用領域範圍:高速運動
  • 理論性質:時空理論、引力理論
  • 數學基礎:黎曼幾何
狹義與廣義相對論的分別,狹義相對論,廣義相對論,相對論的套用,相對論對物理學發展的影響,參見,

狹義與廣義相對論的分別

傳統上,在愛因斯坦剛剛提出相對論的初期,人們以所討論的問題是否涉及非慣性參考系來作為狹義與廣義相對論分類的標誌。隨著相對論理論的發展,這種分類方法越來越顯出其缺點——參考系是跟觀察者有關的,以這樣一個相對的物理對象來劃分物理理論,被認為不能反映問題的本質。目前一般認為,狹義與廣義相對論的區別在於所討論的問題是否涉及引力(彎曲時空),即狹義相對論只涉及那些沒有引力作用或者引力作用可以忽略的問題,而廣義相對論則是討論有引力作用時的物理學。用相對論的語言來說,就是狹義相對論的背景時空是平直的,即四維平凡流型配以閔氏度規,其曲率張量為零,又稱閔氏時空;而廣義相對論的背景時空則是彎曲的,其曲率張量不為零。

狹義相對論

主條目:狹義相對論
愛因斯坦在他1905年的論文《論動體的電動力學》中介紹了其狹義相對論。
狹義相對論建立在如下的兩個基本公設上:
  • 狹義相對性原理(狹義協變性原理):一切的慣性參考系都是平權的,即物理規律的形式在任何的慣性參考系中是相同的。這意味著物理規律對於一位靜止在實驗室里的觀察者和一個相對於實驗室高速勻速運動著的電子是相同的。
  • 光速不變原理真空中的光速在任何參考系下是恆定不變的,這用幾何語言可以表述為光子在時空中的世界線總是類光的。也正是由於光子有這樣的實驗性質,在國際單位制中使用了“光在真空中1/299,792,458秒內所走過的距離”來定義長度單位“米”(米)。光速不變原理是宇宙時空對稱性的體現,而中微子的超光速現象可能只是時空對稱性的對稱破缺而決不能推翻相對論(已證實該實驗有誤)。
在狹義相對論提出以前,人們認為時間和空間是各自獨立的絕對的存在,自伽利略時代以來這種絕對時空的觀念就開始建立,牛頓創立的牛頓經典力學和經典運動學就是在絕對時空觀的基礎上創立。而愛因斯坦的相對論在牛頓經典力學、麥克斯韋經典電磁學等的基礎上首次提出了“四維時空”的概念,它認為時間和空間各自都不是絕對的,而絕對的是一個它們的整體——時空,在時空中運動的觀者可以建立“自己的”參照系,可以定義“自己的”時間和空間(即對四維時空做“3+1分解”),而不同的觀者所定義的時間和空間可以是不同的。具體的來說,在閔氏時空中:如果一個慣性觀者(G)相對於另一個慣性觀者(G')在做勻速運動,則他們所定義的時間(t與t')和空間({x,y,z}與{x',y',z'})之間滿足洛倫茲變換。而在這一變換關係下就可以推導出“尺縮”、“鐘慢”等效應,具體見狹義相對論條目。因為愛因斯坦之前的科學家們並沒有高速運動的觀測和體驗,所以絕對時空觀在古代科技水平下無疑是真理,而愛因斯坦的狹義相對論更新了人們的世界觀,為廣義相對論的誕生奠定了堅實的基礎。
在愛因斯坦以前,人們廣泛的關注於麥克斯韋方程組在伽利略變換下不協變的問題,也有人(如龐加萊洛倫茲)注意到愛因斯坦提出狹義相對論所基於的實驗(如麥可孫-莫雷干涉儀實驗等),也有人推導出過與愛因斯坦類似的數學表達式(如洛倫茲變換),但只有愛因斯坦將這些因素與經典物理的時空觀結合起來提出了狹義相對論,並極大的改變了我們的時空觀。在這一點上,狹義相對論是革命性的。

廣義相對論

主條目:廣義相對論
在本質上,所有的物理學問題都涉及採用哪個時空觀的問題。在二十世紀以前的經典物理學裡,人們採用的是牛頓絕對時空觀。而相對論的提出改變了這種時空觀,這就導致人們必須依相對論的要求對經典物理學的公式進行改寫,以使其具有相對論所要求的洛倫茲協變性而不是以往的伽利略協變性。在經典理論物理的三大領域中,電動力學本身就是洛倫茲協變的,無需改寫;統計力學有一定的特殊性,但這一特殊性並不帶來很多急需解決的原則上的困難;而經典力學的大部分都可以成功的改寫為相對論形式,以使其可以用來更好的描述高速運動下的物體,但是唯獨牛頓的引力理論無法在狹義相對論的框架體系下改寫,這直接導致愛因斯坦擴展其狹義相對論,而得到了廣義相對論。
愛因斯坦在1915年左右發表的一系列論文中給出了廣義相對論最初的形式。他首先注意到了被稱之為(弱)等效原理的實驗事實:引力質量慣性質量是相等的(目前實驗證實,在{\displaystyle 10^{-12}}的精確度範圍內,仍沒有看到引力質量與慣性質量的差別)。這一事實也可以理解為,當除了引力之外不受其他力時,所有質量足夠小(即其本身的質量對引力場的影響可以忽略)的測驗物體在同一引力場中以同樣的方式運動。既然如此,則不妨認為引力其實並不是一種“力”,而是一種時空效應,即物體的質量(準確的說應當為非零的能動張量)能夠產生時空的彎曲,引力源對於測驗物體的引力正是這種時空彎曲所造成的一種幾何效應。這時,所有的測驗物體就在這個彎曲的時空中做慣性運動,其運動軌跡正是該彎曲時空的測地線,它們都遵守測地線方程。正是在這樣的思路下,愛因斯坦得到了其廣義相對論。
系統的說,廣義相對論包括如下幾條基本假設。:
  • 廣義相對性原理(廣義協變性原理):任何物理規律都應該用與參考系無關的物理量表示出來。用幾何語言描述即為,任何在物理規律中出現的時空量都應當為該時空的度規或者由其導出的物理量。
  • 愛因斯坦場方程(詳見廣義相對論條目):它具體表達了時空中的物質(能動張量)對於時空幾何(曲率張量的函式)的影響,其中對應能動張量的要求(其梯度為零)則包含了上面關於在其中做慣性運動的物體的運動方程的內容。
在現有的廣義相對論的理論框架下,等效原理是可以由其他假設推出。具體來說,就是如果時空中有一觀者(G),則可在其世界線的一個領域內建立的局域慣性參考系,而廣義相對性原理要求該系中的克氏符(Christoffel symbols)在觀者G的世界線上的值為零。因而現代的相對論學家經常認為其不應列入廣義相對論的基本假設,其中比較有代表性的如Synge就認為:等效原理在相對論創立的初期起到了與以往經典物理的橋樑的作用,它可以被稱之為“廣義相對論的接生婆”,而現在“在廣義相對論這個新生嬰兒誕生後把她體面地埋葬掉”。
如果說到了二十世紀初狹義相對論因為經典物理原來固有的矛盾、大量的新實驗以及廣泛的關注而呼之欲出的話,那么廣義相對論的提出則在某種意義下是“理論走在了實驗前面”的一次實踐。在此之前,雖然有一些後來用以支持廣義相對論的實驗現象(如水星軌道近日點的進動),但是它們並不總是物理學關注的焦點。而廣義相對論的提出,在很大程度上是由於相對論理論自身發展的需要,而並非是出於有一些實驗現象急待有理論去解釋的現實需要,這在物理學的發展史上是並不多見的。因而在相對論提出之後的一段時間內其進展並不是很快,直到後來天文學上的一系列觀測的出現,才使廣義相對論有了比較大的發展。到了當代,在對於引力波的觀測和對於一些高密度天體的研究中,廣義相對論都成為了其理論基礎之一。而另一方面,廣義相對論的提出也為人們重新認識一些如宇宙學時間旅行等古老的問題提供了新的工具和視角。

相對論的套用

相對論主要在兩個方面有用:一是高速運動(與光速可比擬的高速),一是強引力場。
  • 在醫院的放射治療部,多數設有一台粒子加速器,產生高能粒子來製造同位素,作治療或造影之用。氟代脫氧葡萄糖的合成便是一個經典例子。由於粒子運動的速度相當接近光速(0.9c-0.9999c),故粒子加速器的設計和使用必須考慮相對論效應。
  • 全球衛星定位系統的衛星上的原子鐘,對精確定位非常重要。這些時鐘同時受狹義相對論因高速運動而導致的時間變慢(-7.2 μs/日),和廣義相對論因較(地面物件)承受著較弱的重力場而導致時間變快效應(+45.9 μs/日)影響。相對論的淨效應是那些時鐘較地面的時鐘運行的為快。故此,這些衛星的軟體需要計算和抵消一切的相對論效應,確保定位準確。
  • 全球衛星定位系統的算法本身便是基於光速不變原理的,若光速不變原理不成立,則全球衛星定位系統則需要更換為不同的算法方能精確定位。
  • 過渡金屬的內層電子,運行速度極快,相對論效應不可忽略。在設計或研究新型的催化劑時,便需要考慮相對論對電子軌態能級的影響。同理,相對論亦可解釋的6s惰性電子對效應。這個效應可以解釋為何某些化學電池有著較高的能量密度,為設計更輕巧的電池提供理論根據。相對論也可以解釋為何水銀在常溫下是液體,而其他金屬卻不是。
  • 由廣義相對論推導出來的重力透鏡效應,讓天文學家可以觀察到黑洞和不發射電磁波的暗物質,和評估質量在太空的分布狀況。
值得一提的是,核子彈的出現和著名的質能關係式(E=mc2)關係不大,而愛因斯坦本人也肯定了這一點。質能關係式只是解釋核子彈威力的數學工具而已,對實作核子彈意義不大。

相對論對物理學發展的影響

相對論直接和間接地催生了量子力學的誕生,也為研究微觀世界的高速運動確立全新的數學模型。

參見

相關詞條

熱門詞條

聯絡我們