R語言統計分析與套用

R語言統計分析與套用

《R語言統計分析與套用》是2020年3月人民郵電出版社出版的圖書,作者是汪海波。

基本介紹

  • 書名:R語言統計分析與套用
  • 作者:汪海波
  • ISBN:9787115469823
  • 頁數:444頁
  • 定價:79元
  • 出版社:人民郵電出版社
  • 出版時間:2020年3月
  • 裝幀:平裝
  • 開本:16開
內容簡介,圖書目錄,

內容簡介

R統計軟體是目前套用* 廣泛的統計軟體之一,已廣泛套用於醫學、財經和社會科學等領域中進行數據管理和數據分析處理。本書以Windows作業系統下的R軟體為基礎,以實踐中常用的統計分析方法為基本內容,介紹了R語言的編寫以及結果解釋。本書重點介紹了各種多元統計分析方法的基本原理及其套用,包括方差分析、多元線性回歸、Logistic回歸分析、生存分析、主成分分析、因子分析、聚類分析、判別分析以及典型相關分析等。每一章詳細討論了統計分析方法的基本原理和分析過程,介紹了R語言的使用方法及套用實例說明、結果解釋及結論分析等。

圖書目錄

* 一篇 R基礎與入門篇
* 1章 R入門 2
1.1 R簡介 2
1.1.1 R特點 2
1.1.2 R支持資料 3
1.2 R的獲取、安裝和啟動 4
1.2.1 R的獲取 4
1.2.2 R的安裝 5
1.2.3 R的啟動 7
1.3 R選單操作 7
1.4 工作空間 10
1.5 程式包 11
1.5.1 什麼是程式包 11
1.5.2 安裝程式包 11
1.6 R使用以及圖形界面 12
1.7 本章小結 13
* 2章 R編程入門 14
2.1 R語言 14
2.1.1 數據集的概念 14
2.1.2 R運算符 21
2.2 R常用函式及其套用 23
2.2.1 數學函式 24
2.2.2 樣本統計函式 26
2.2.3 機率函式 27
2.2.4 字元處理函式 28
2.2.5 其他實用函式 30
2.3 數據的輸入 31
2.3.1 使用鍵盤輸入數據 31
2.3.2 數據集的導入 32
2.4 本章小結 34
第3章 基本數據管理 35
3.1 創建新變數 36
3.2 向量運算 37
3.2.1 添加或刪除向量元素 37
3.2.2 向量運算和邏輯運算 37
3.2.3 用∶運算符創建向量 37
3.2.4 使用seq()函式創建向量 38
3.3 處理數據對象的實用函式 38
3.4 變數的重編碼 39
3.5 變數的重命名 40
3.6 缺失值 41
3.7 日期值 42
3.8 類型轉換 44
3.9 數據排序 45
3.10 數據集的合併 45
3.11 數據集取子集 46
3.11.1 選入觀測 46
3.11.2 選入變數 47
3.11.3 剔除變數 48
3.11.4 subset()函式 49
3.12 本章小結 49
第4章 樣本量和檢驗效能估計 50
4.1 樣本量估算以及R程式包 50
4.1.1 樣本量影響因素 50
4.1.2 檢驗效能分析pwr包 52
4.2 t檢驗 53
4.2.1 單樣本與已知總體檢驗時樣本
量的估計及R程式 53
4.2.2 兩總體均數比較樣本量的估計
及R程式 54
4.2.3 配對設計兩樣本均數比較樣本
量的估計及R程式 55
4.3 方差分析 56
4.4 相關分析 57
4.5 線性模型 58
4.6 分類資料的樣本量估計 59
4.6.1 單樣本與已知總體檢驗時樣
本量的估計及R程式 59
4.6.2 兩樣本率比較樣本量的估計及
R程式 60
4.6.3 配對設計總體率比較樣本量的
估計及R程式 61
4.7 本章小結 62
第5章 高 級數據管理 63
5.1 控制語句 63
5.1.1 重複和循環 63
5.1.2 條件執行 65
5.2 數據處理綜合實例 67
5.3 轉置與整合 70
5.3.1 轉置 70
5.3.2 整合數據 71
5.4 本章小結 72
* 二篇 統計方法與R分析實例
第6章 定量資料的統計描述 74
6.1 統計描述基礎理論知識 74
6.1.1 集中趨勢描述 75
6.1.2 離散趨勢描述 77
6.1.3 常態分配 79
6.2 統計描述分析實例 81
6.2.1 summary()函式分析實例 81
6.2.2 sapply()函式分析實例 83
6.2.3 describe()函式分析實例 85
6.2.4 stat.desc()函式分析實例 89
6.2.5 分組計算描述性統計量 91
6.2.6 對數常態分配資料的統計
描述 94
6.3 本章小結 95
第7章 t檢驗 96
7.1 單樣本t檢驗 96
7.1.1 單樣本t檢驗的基礎理論 96
7.1.2 單樣本t檢驗分析實例 97
7.1.3 無原始數據的單樣本t檢驗R
程式 98
7.2 配對設計資料的t檢驗 98
7.2.1 配對設計資料t檢驗的基礎
理論 98
7.2.2 配對t檢驗實例 100
7.2.3 無原始數據的配對設計的
t檢驗分析實例 102
7.3 兩獨立樣本的t檢驗 103
7.3.1 兩獨立樣本t檢驗的基礎
理論 103
7.3.2 獨立樣本t檢驗分析
實例 105
7.3.3 無原始數據的兩獨立樣本
t檢驗分析實例 107
7.4 本章小結 107
第8章 方差分析 108
8.1 方差分析及ANOVA模型擬合概述 108
8.1.1 方差分析的基本思想 108
8.1.2 方差分析基本術語 110
8.1.3 ANOVA模型擬合 111
8.2 完全隨機設計資料的方差分析 112
8.2.1 單因子方差分析介紹 113
8.2.2 單因子方差分析的R程式
實例 113
8.3 隨機區組設計資料的方差分析 118
8.3.1 隨機區組方差分析介紹 119
8.3.2 隨機區組方差分析的R程式
實例 121
8.4 拉丁方設計資料的方差分析 126
8.4.1 拉丁方方法介紹 126
8.4.2 拉丁方分析的R程式實例 128
8.5 析因設計資料的方差分析 131
8.5.1 析因設計方法介紹 131
8.5.2 析因方差分析的R程式實例 134
8.6 正交試驗設計資料的方差分析 136
8.6.1 正交試驗設計方法介紹 136
8.6.2 正交試驗設計資料分析的R
程式實例 138
8.7 重複測量資料的方差分析 139
8.7.1 重複測量設計方法介紹 140
8.7.2 重複測量資料分析的R
程式實例 141
8.8 協方差分析 144
8.8.1 協方差分析方法介紹 144
8.8.2 協方差分析的R程式實例 145
8.9 本章小結 148
第9章 直線回歸與相關 149
9.1 直線相關分析 149
9.1.1 直線相關分析介紹 149
9.1.2 直線相關分析的R實例 151
9.2 直線回歸分析 154
9.2.1 直線回歸分析介紹 155
9.2.2 直線回歸分析的R程式實例 157
9.3 本章小結 162
* 10章 多元線性回歸與相關 163
10.1 多元線性回歸與相關的基礎理論 163
10.1.1 多元線性回歸 163
10.1.2 復相關係數與偏相關係數 176
10.2 分析實例 178
10.2.1 多元線性回歸方程的建立 178
10.2.2 復相關係數與偏相關係數的
R程式實例 183
10.3 本章小結 185
* 11章 Logistic回歸分析 186
11.1 非條件Logistic回歸 186
11.1.1 非條件Logistic回歸介紹 187
11.1.2 非條件Logistic回歸模型的
建立和檢驗 188
11.1.3 非條件Logistic回歸的R
程式 190
11.2 條件Logistic回歸 205
11.2.1 條件Logistic回歸介紹 205
11.2.2 條件Logistic回歸的R
程式 206
11.3 本章小結 207
* 12章 相對數 208
12.1 相對數簡介 208
12.1.1 率的標準化 210
12.1.2 率的假設檢驗 212
12.2 R分析實例 214
12.2.1 率的標準化R程式 214
12.2.2 率的Z(U)檢驗的R
程式 215
12.3 本章小結 216
* 13章 行×列表分析 217
13.1 四格表資料 217
13.1.1 四格表卡方檢驗介紹 218
13.1.2 四格表卡方檢驗的R
程式 220
13.2 配對計數資料的卡方檢驗 224
13.2.1 四格表配對卡方檢驗介紹 224
13.2.2 四格表配對卡方檢驗的R
程式 225
13.3 列變數為順序變數的行均分檢驗 226
13.3.1 行均分檢驗介紹 227
13.3.2 行均分檢驗的R程式 227
13.4 行列均為順序變數的相關檢驗 230
13.4.1 行列均為順序變數的相關
檢驗介紹 230
13.4.2 行列均為順序變數的相關
檢驗的R程式 231
13.5 分層行列表的分析 235
13.5.1 分層行列表的分析簡介 235
13.5.2 分層行列表的分析的R
程式 236
13.6 趨勢卡方檢驗 239
13.6.1 趨勢卡方檢驗簡介 239
13.6.2 趨勢卡方檢驗的R程式 239
13.7 卡方分割與卡方合併 241
13.7.1 卡方的分割與合併簡介 241
13.7.2 卡方分割與卡方合併分析
實例 241
13.8 本章小結 243
* 14章 非參數統計 244
14.1 單樣本資料與已知總體參數的非
參數檢驗 245
14.1.1 單組資料的符號及符號秩和
檢驗 245
14.1.2 單組資料的非參數檢驗R
程式 247
14.2 配對設計資料的非參數檢驗 248
14.2.1 配對設計資料的符號及符號
秩和檢驗 248
14.2.2 配對設計資料的非參數檢驗
R程式 249
14.3 兩組定量資料的非參數檢驗 250
14.3.1 兩組定量資料的非參數檢驗
方法概述 251
14.3.2 兩組定量資料非參數檢驗的
R程式 252
14.4 多組定量資料的非參數檢驗 253
14.4.1 多組定量資料的非參數檢驗
方法概述 253
14.4.2 多組定量資料非參數檢驗的
R程式 255
14.5 等級分組資料的非參數檢驗 260
14.5.1 等級分組資料的非參數檢驗
方法概述 260
14.5.2 等級分組資料非參數檢驗的
R程式 261
14.6 隨機區組資料的非參數檢驗 264
14.6.1 隨機區組資料的非參數檢驗
方法概述 264
14.6.2 隨機區組資料非參數檢驗的
R程式 265
14.7 等級相關(秩相關) 266
14.7.1 秩相關概述 266
14.7.2 spearman秩相關的R程式 267
14.8 本章小結 268
* 15章 生存分析 269
15.1 生存分析簡介 269
15.1.1 生存數據 269
15.1.2 生存時間函式 270
15.1.3 均數、中位數和半數
生存期 271
15.1.4 生存分析的基本方法 271
15.2 生存曲線 272
15.2.1 壽命表法及R分析實例 273
15.2.2 乘積極限法(Kaplan-Meier)及
R分析實例 278
15.2.3 Cox回歸及R分析實例 280
15.3 本章小結 285
* 16章 主成分分析 286
16.1 主成分分析簡介 287
16.1.1 主成分分析的數學模型 287
16.1.2 主成分分析的方法步驟 288
16.1.3 主成分分析的套用 290
16.2 R中的主成分分析實例 291
16.3 本章小結 307
* 17章 因子分析 308
17.1 因子分析簡介 308
17.2 主成分分析與因子分析比較 317
17.3 因子分析及R實例 318
17.4 本章小結 337
* 18章 聚類分析 338
18.1 聚類分析簡介 338
18.2 聚類分析及R實例 344
18.2.1 varclus ()函式 344
18.2.2 kmean()函式 348
18.2.3 hclust()函式實例 352
18.3 本章小結 355
* 19章 判別分析 356
19.1 判別分析簡介 357
19.2 判別分析及R實例 362
19.3 本章小結 386
* 20章 典型相關分析 388
20.1 典型相關簡介 388
20.1.1 典型相關分析的理論架構及
基本假設 390
20.1.2 冗餘分析 391
20.1.3 典型相關係數的假設檢驗 392
20.2 cancor()函式實例 392
20.3 本章小結 400
* 21章 診斷試驗的ROC分析 401
21.1 診斷試驗簡介 401
21.1.1 診斷試驗介紹 401
21.1.2 診斷試驗評價指標 402
21.1.3 ROC分析資料收集與整理 404
21.1.4 ROC曲線構建 405
21.2 ROC分析及R分析實例 406
21.3 本章小結 423
* 22章 統計圖 425
22.1 條形圖 425
22.2 餅圖 429
22.3 散點圖 431
22.4 折線圖 433
22.5 箱線圖 434
22.6 直方圖 437
22.7 核密度圖 442
22.8 點圖 442
22.9 本章小結 444
參考文獻 445

相關詞條

熱門詞條

聯絡我們