PID算法

PID算法

在過程控制中,按偏差的比例(P)、積分(I)和微分(D)進行控制的PID控制器(亦稱PID調節器)是套用最為廣泛的一種自動控制器。它具有原理簡單,易於實現,適用面廣,控制參數相互獨立,參數的選定比較簡單等優點;而且在理論上可以證明,對於過程控制的典型對象──“一階滯後+純滯後”與“二階滯後+純滯後”的控制對象,PID控制器是一種最優控制。PID調節規律是連續系統動態品質校正的一種有效方法,它的參數整定方式簡便,結構改變靈活(PI、PD、…)。

基本介紹

  • 中文名:PID算法
  • 外文名:Proportion Integral Differential 
  • 最初套用:船舶自動舵
  • 最初套用時間:19世紀70年代
  • 套用範圍:工業控制,船舶自動舵等
簡介,PID控制原理和算法,PID作用,PID參數調節,算法種類,PID增量式算法,PID位置算法,遇限削弱積分法,積分分離法,有效偏差法,

簡介

控制點包含三種比較簡單的PID控制算法,分別是:增量式算法,位置式算法,微分先行。 這三種PID算法雖然簡單,但各有特點,基本上能滿足一般控制的大多數要求。

PID控制原理和算法

閉環控制是根據控制對象輸出反饋來進行校正的控制方式,它是在測量出實際與計畫發生偏差時,按定額或標準來進行糾正的。比如控制一個電機的轉速,就得有一個測量轉速的感測器,並將結果反饋到控制路線上。提到閉環控制算法,不得不提PID,它是閉環控制算法中最簡單的一種。PID是比例 (Proportion) 積分 ,(Integral) 微分 ,(Differential coefficient) 的縮寫,分別代表了三種控制算法。通過這三個算法的組合可有效地糾正被控制對象的偏差,從而使其達到一個穩定的狀態。

PID作用

1)比例,反應系統的基本(當前)偏差e(t),係數大,可以加快調節,減小誤差,但過大的比例使系統穩定性下降,甚至造成系統不穩定;比例控制的比例係數如果太小,即調節後的電位器轉角與位置L的差值太小,調節的力度不夠,使系統輸出量變化緩慢,調節所需的總時間過長。比例係數如果過大,即調節後電位器轉角與位置L的差值過大,調節力度太強,將造成調節過頭,甚至使溫度忽高忽低,來回震盪。增大比例係數使系統反應靈敏,調節速度加快,並且可以減小穩態誤差。但是比例係數過大會使超調量增大,振盪次數增加,調節時間加長,動態性能變壞,比例係數太大甚至會使閉環系統不穩定。單純的比例控制很難保證調節得恰到好處,完全消除誤差。如下圖所示:
圖1圖1
2)積分,反應系統的累計偏差,使系統消除穩態誤差,提高無差度,因為有誤差,積分調節就進行,直至無誤差;積分調節的“大方向”是正確的,積分項有減小誤差的作用。一直要到系統處於穩定狀態,這時誤差恆為零,比例部分和微分部分均為零,積分部分才不再變化,並且剛好等於穩態時需要的控制器的輸出值,對應於上述溫度控制系統中電位器轉角的位置L。因此積分部分的作用是消除穩態誤差,提高控制精度,積分作用一般是必須的。 如下圖所示:
圖2圖2
3)微分,反映系統偏差信號的變化率e(t)-e(t-1),具有預見性,能預見偏差變化的趨勢,產生超前的控制作用,在偏差還沒有形成之前,已被微分調節作用消除,因此可以改善系統的動態性能。但是分對噪聲干擾有放大作用,加強微分對系統抗干擾不利。誤差的微分就是誤差的變化速率,誤差變化越快,其微分絕對值越大。誤差增大時,其微分為正;誤差減小時,其微分為負。控制器輸出量的微分部分與誤差的微分成正比,反映了被控量變化的趨勢。如下圖所示:
圖3圖3
閉環控制系統的振盪甚至不穩定的根本原因在於有較大的滯後因素。因為微分項能預測誤差變化的趨勢,這種“超前”的作用可以抵消滯後因素的影響。適當的微分控制作用可以使超調量減小,增加系統的穩定性。
對於有較大的滯後特性的被控對象,如果PI控制的效果不理想,可以考慮增加微分控制,以改善系統在調節過程中的動態特性。如果將微分時間設定為0,微分部分將不起作用。
微分時間與微分作用的強弱成正比,微分時間越大,微分作用越強。如果微分時間太大,在誤差快速變化時,回響曲線上可能會出現“毛刺”。
微分控制的缺點是對干擾噪聲敏感,使系統抑制干擾的能力降低。為此可在微分部分增加慣性濾波環節。
一種PID控制算法的流程圖,如下所示:
圖4圖4

PID參數調節

在整定PID控制器參數時,可以根據控制器的參數與系統動態性能和穩態性能之間的定性關係,用實驗的方法來調節控制器的參數。有經驗的調試人員一般可以較快地得到較為滿意的調試結果。在調試中最重要的問題是在系統性能不能令人滿意時,知道應該調節哪一個參數,該參數應該增大還是減小。
為了減少需要整定的參數,首先可以採用PI控制器。為了保證系統的安全,在調試開始時應設定比較保守的參數,例如比例係數不要太大,積分時間不要太小,以避免出現系統不穩定或超調量過大的異常情況。給出一個階躍給定信號,根據被控量的輸出波形可以獲得系統性能的信息,例如超調量和調節時間。應根據PID參數與系統性能的關係,反覆調節PID的參數。
如果階躍回響的超調量太大,經過多次振盪才能穩定或者根本不穩定,應減小比例係數、增大積分時間。如果階躍回響沒有超調量,但是被控量上升過於緩慢,過渡過程時間太長,應按相反的方向調整參數。如果消除誤差的速度較慢,可以適當減小積分時間,增強積分作用。
反覆調節比例係數和積分時間,如果超調量仍然較大,可以加入微分控制,微分時間從0逐漸增大,反覆調節控制器的比例、積分和微分部分的參數。
總之,PID參數的調試是一個綜合的、各參數互相影響的過程,實際調試過程中的多次嘗試是非常重要的,也是必須的。常用的控制方式:P,PI,PD,PID控制算法。

算法種類

PID增量式算法

離散化公式
△u(k)= u(k)- u(k-1)
△u(k)=Kp[e(k)-e(k-1)]+Kie(k)+Kd[e(k)-2e(k-1)+e(k-2)]
進一步可以改寫成
△u(k)=Ae(k)-Be(k-1)+Ce(k-2)
對於增量式算法,可以選擇的功能有
(1) 濾波的選擇
可以對輸入加一個前置濾波器,使得進入控制算法的給定值不突變,而是有一定慣性延遲的緩變數。
(2) 系統的動態過程加速
在增量式算法中,比例項與積分項的符號有以下關係:如果被控量繼續偏離給定值,則這兩項符號相同,而當被控量向給定值方向變化時,則這兩項的符號相反。
由於這一性質,當被控量接近給定值的時候,反號的比例作用阻礙了積分作用,因而避免了積分超調以及隨之帶來的振盪,這顯然是有利於控制的。但如果被控量遠未接近給定值,僅剛開始向給定值變化時,由於比例和積分反向,將會減慢控制過程。
為了加快開始的動態過程,我們可以設定一個偏差範圍v,當偏差|e(t)|< β時,即被控量接近給定值時,就按正常規律調節,而當|e(t)|>= β時,則不管比例作用為正或為負,都使它向有利於接近給定值的方向調整,即取其值為|e(t)-e(t-1)|,其符號與積分項一致。利用這樣的算法,可以加快控制的動態過程。
(3) PID增量算法的飽和作用及其抑制
在PID增量算法中,由於執行元件本身是機械或物理的積分儲存單元,如果給定值發生突變時,由算法的比例部分和微分部分計算出的控制增量可能比較大,如果該值超過了執行元件所允許的最大限度,那么實際上執行的控制增量將時受到限制時的值,多餘的部分將丟失,將使系統的動態過程變長,因此,需要採取一定的措施改善這種情況。
糾正這種缺陷的方法是採用積累補償法,當超出執行機構的執行能力時,將其多餘部分積累起來,而一旦可能時,再補充執行。

PID位置算法

離散公式:
u(k)=Kp*e(k) +Ki*
+Kd*[e(k)-e(k-1)]
對於位置式算法,可以選擇的功能有
a、濾波:同上為一階慣性濾波
b、飽和作用抑制:

遇限削弱積分法

一旦控制變數進入飽和區,將只執行削弱積分項的運算而停止進行增大積分項的運算。具體地說,在計算Ui時,將判斷上一個時刻的控制量Ui-1是否已經超出限制範圍,如果已經超出,那么將根據偏差的符號,判斷系統是否在超調區域,由此決定是否將相應偏差計入積分項。

積分分離法

在基本PID控制中,當有較大幅度的擾動或大幅度改變給定值時, 由於此時有較大的偏差,以及系統有慣性和滯後,故在積分項的作用下,往往會產生較大的超調量和長時間的波動。特別是對於溫度、成份等變化緩慢的過程,這一現象將更嚴重。為此可以採用積分分離措施,即偏差較大時,取消積分作用;當偏差較小時才將積分作用投入。
另外積分分離的閾值應視具體對象和要求而定。若閾值太大,達不到積分分離的目的,若太小又有可能因被控量無法跳出積分分離區,只進行PD控制,將會出現殘差
離散化公式
當|e(t)|>β時
q0 = Kp(1+Td/T)
q1 = -Kp(1+2Td/T)
q2 = Kp Td /T
u(t) = u(t-1) + Δu(t)
註:各符號含義如下
u(t);;;;; 控制器的輸出值。
e(t);;;;; 控制器輸入與設定值之間的誤差。
Kp;;;;;;; 比例係數。
Ti;;;;;;; 積分時間常數。
Td;;;;;;; 微分時間常數。(有的地方用"Kd"表示)
T;;;;;;;; 調節周期。
β;;;;;;; 積分分離閾值

有效偏差法

當根據PID位置算法算出的控制量超出限制範圍時,控制量實際上只能取邊際值U=Umax,或U=Umin,有效偏差法是將相應的這一控制量的偏差值作為有效偏差值計入積分累計而不是將實際的偏差計入積分累計。因為按實際偏差計算出的控制量並沒有執行。
如果實際實現的控制量為U=U(上限值或下限值),則有效偏差可以逆推出,即:
=
然後,由該值計算積分項
微分先行PID算法
當控制系統的給定值發生階躍時,微分作用將導致輸出值大幅度變化,這樣不利於生產的穩定操作。因此在微分項中不考慮給定值,只對被控量(控制器輸入值)進行微分。微分先行PID算法又叫測量值微分PID算法。公式如下:
離散化公式
參數說明同上
對於純滯後對象的補償
控制點採用了Smith預測器,使控制對象與補償環節一起構成一個簡單的慣性環節。
PID參數整定
(1) 比例係數Kp對系統性能的影響
比例係數加大,使系統的動作靈敏,速度加快,穩態誤差減小。Kp偏大,振盪次數加多,調節時間加長。Kp太大時,系統會趨於不穩定。Kp太小,又會使系統的動作緩慢。Kp可以選負數,這主要是由執行機構、感測器以控制對象的特性決定的。如果Kc的符號選擇不當對象狀態(pv值)就會離控制目標的狀態(sv值)越來越遠,如果出現這樣的情況Kp的符號就一定要取反。
(2) 積分控制Ti對系統性能的影響
積分作用使系統的穩定性下降,Ti小(積分作用強)會使系統不穩定,但能消除穩態誤差,提高系統的控制精度。
(3) 微分控制Td對系統性能的影響
微分作用可以改善動態特性,Td偏大時,超調量較大,調節時間較短。Td偏小時,超調量也較大,調節時間也較長。只有Td合適,才能使超調量較小,減短調節時間。

相關詞條

熱門詞條

聯絡我們