黎野平,1972年11月出生,湖北省人,博士,華東理工大學理科院教授、博士生導師。
基本介紹
- 中文名:黎野平
- 職業:教師
- 學位/學歷:博士
- 專業方向:非線性偏微分方程理論及其套用、可壓縮流體力學
- 任職院校:華東理工大學理科院
個人經歷,主講課程,研究方向,學術成果,
個人經歷
1992.9—1996.6 湖北大學(理學學士學位);
1998.9—2001.6 武漢大學(理學碩士學位);
2002.1—2004.12 香港中文大學(哲學博士學位)。
1997.7—1998.8 湖北科技學院(講匪協促師);
2005.1—2006.6 上海大學(副教授);
2005.3—2006.12 復旦大學數學科學學院博士後流動站;
2007.1—2014.4上海師範大學(教授);
2014.5— 華東理工大學(教授)奔譽諒拘。
主講課程
講授本科課程:數學分析、常微分方程、數學物理方程、實變函式、泛函分析、點集拓撲學、高等代數等;
研究生:偏微分方程引論、廣義函式與Sobolev空間、套用微分方程、二階橢圓型方程的理論、偏微分方程的現代方法等。
研究方向
非線性偏微分方程理論及其套用、可壓縮流體力學
學術成果
1、 國家自然科學基金項目:幾類巨觀和微觀半導體方程的若干數學問題,11671134,2017.1—2020.12,舉多42萬,主持;
2、 國家自然科學基金項目:雙極半導體模型和相關流體力學方程的數學問題,11171223,2012.1—2015.12,45萬,主持;
3、國家自然科學基金項目:流體動力學半導汽酷拘體模型的漸近分析,10701057,2008.1-2010.12,18萬,主持;
4、高等學校博士學科點專項基金:雙極Euler-Poisson方程的穩態解的存在性及其穩定船蘭元性,20133127110007,2014.1—2016.12.31,12萬元判捆府茅察夜抹,主持;
5、上海師範大學科技創新團隊項目:數學模型的建立、分析、算法及套用,DZL901,2009.6—2012.6,90萬,主持;
6、上海市教委創新重點項目:可壓Navier-Stokes-Poisson和Navier-Stokes-Korteweg 方程的數學理論,13ZZ109,2013.1—2015.12,16萬,主持。
代表性研究論文:
[1].Yeping Li and Xiongfeng Yang, Stability of stationary solution for the compressible viscous magnetohydrodynamic equations with large potential force in bounded domain, J. Differential Equations,
[2].Yeping Li, Vanishing viscosity and Debye-length limit to rarefaction wave with vacuum for the 1D bipolar Navier-Stokes-Poisson equation, Z.angew Math. Phys.
[3].Yeping Li and Zhen Luo, Zero-capillarity-viscosity limit to rarefaction waves for the one-dimensional compressible Navier-Stokes-Korteweg equations. Mathematical Methods in Applied Sciences,
[4].Haiyue Kong and Yeping Li, Relaxation limit of the one-dimensional bipolar Euler-Poisson system in the bound domain, Applied Mathematics and Computation
[5].Yeping Li and Wenan Yong, Zero Mach number limit of the compressible Navier-Stokes-Korteweg equations, Comm. Math. Sci.,
[6].Yeping Li and Wenan Yong, Quasi-neutral limit in a three-dimensional compressible Navier-Stokes-Poisson-Korteweg model, IMA Journal of Applied Mathematics,
[7].Yeping Li and Zhiming Zhou, Relaxation-time limit in the multi-dimensional bipolar nonisentropic Euler-Poisson systems, J. Differential Equations,
[8].Yeping Li and Wenan Yong, Zero Mach number limit of compressible viscous magnetohydrodynamic equations, Chinese Annals of Mathematics, Series B,
[9].Yeping Li, Global existence and asymptotic behavior of the solutions to the 3D bipolar non-isentropic Euler-Poisson equation, Nonlinear Analysis-Modelling and Control,
[10].Zhiyuan Zhao and Yeping Li, Global existence and optimal decay rate of the compressible bipolar Navier-Stokes-Poisson equations with external force, Nonlinear Analysis: Real World Applications,
[11].Yeping Li, Global existence and large time behavior of solutions for the bipolar quantum hydrodynamic models in the quarter plane, Mathematical Methods in Applied Sciences, 36(2013), 1409-1422.
[12].Yeping Li, Global existence and asymptotic behavior of smooth solutions to a bipolar Euler-Poisson equations in a bound domain, Z.angew Math. Phys.
[13].Yeping Li, Asymptotic behavior and quasineutral limit for the one-dimensional bipolar Euler-Poisson system with boundary effects, Chinese Annals of Mathematics, Series B,
[14].Xuemin Zhang and Yeping Li, Zero-electron-mass limit and zero-relaxation-time limit in a multi-dimensional stationary bipolar Euler-Poisson system, Applied Mathematics and Computation,
[15].Zhiyuan Zhao and Yeping Li, Existence and optimal decay rate of the compressible non-isentropic Navier-Stokes-Poisson models with external force, Nonlinear Analysis: Theory, Methods & Applications,
[16].Yeping Li, Convergence of the compressible magnetohydrodynamic equations to incompressible magnetohydrodynamic equations, Journal of Differential Equations,
[17].Yeping Li and Xiongfeng Yang, Global existence and asymptotic behavior of the solutions to the three dimensional bipolar Euler-Poisson systems, Journal of Differential Equations,
[18].Yeping Li, Relaxation-time limit of the three-dimensional hydrodynamic model with boundary effects, Mathematical Methods in Applied Sciences,
[19].Yeping Li, Existence and some limit analysis of stationary solutions for a multi-dimensional bipolar Euler-Poisson system,Discrete and Continuous Dynamical System,
[20].Yeping Li and Ting Zhang, Relaxation-time limit of the multidimensional bipolar hydrodynamic model in Besov space, Journal of Differential Equations,
[21].Yeping Li, Long-time self-similarity of classical solutions to the bipolar quantum hydrodynamic models, Nonlinear Analysis: Theory, Methods & Applications,
[22].Yeping Li, The combined semiclassical and relaxation limit in a quantum hydrodynamic semiconductor model, Proceedings of the royal society of Edinburgh,
[23].Jianfeng Mao, Fang Zhou and Yeping Li, Some limit analysis in a one-dimensional stationary quantum hydrodynamic model for semiconductors, J.Math.Anal.Appl.
[24].Yeping Li, Relaxation limit and initial layer analysis of a bipolar isentropic hydrodynamic model for semiconductors, Mathematical and Computer Modelling,
[25].Yeping Li, From a multidimensional quantum hydrodynamic model to the classical drift diffusion equation, Quarterly of Applied Mathematics,
[26].Huang Feimin and Li Yeping, Large time behavior and quasineutral limit of solutions to a bipolar hydrodynamic model with large data and vacuum, Discrete and Continuous Dynamical System-Series A,
[27].Yeping Li and Jizhou Zhang, Stationary solutions for a multi-dimensional nonisentropic hydrodynamic model for semiconductors, Mathematical and Computer Modelling
[28].Yeping Li, Stationary solutions for a one-dimensional nonisentropic hydrodynamic model for semiconductors, Acta Mathematica Scientia, Series B
[29].Yeping Li, Asymptotic behavior of the solutions to the one-dimensional nonisentropic hydrodynamic model for semiconductors, Wuhan Univ. J. Nat.Sci
[30].Yeping Li, Global smooth solution for a one dimensional noisentropic hydrodynamic model with non-constant lattice temperature, Z.angew Math. Phys.
[31].Yeping Li, Diffusion relaxation limit of a nonisentropic hydrodynamic model for semiconductors, Math. Methods Appl. Sci.al nonisentropic hydrodynamic model for semiconductors,Nonlinear Analysis:Real World Applictions,
[32].Yeping Li, Asymptotic profile in a multi-dimensional nonisentropic hydrodynamic model for semiconductors,Nonlinear Analysis:Real World Applictions
[33].Yeping Li, Global existence and asymptotic behavior for a multidimensional nonisentropic hydrodynamic semiconductor model with the heat source, Journal of Differential Equations
[34].Yeping Li, Large time behavior of the solutions for a multidimensional nonisentropic hydrodynamic model for semiconductors, Proceedings of the Edinburgh Mathematical Society
[35].Yeping Li, The Cauchy-Neumann problem for a multidimensioal nonisentropic hydrodynamic semiconductor model, Nonlinearity,
[36].Li Yeping, Zhang Shaohua and Meng Peiyuan, On the unconditional robust stability for the multidelays interval coefficient control system, Ann. Differential Equations。
[3].Yeping Li and Zhen Luo, Zero-capillarity-viscosity limit to rarefaction waves for the one-dimensional compressible Navier-Stokes-Korteweg equations. Mathematical Methods in Applied Sciences,
[4].Haiyue Kong and Yeping Li, Relaxation limit of the one-dimensional bipolar Euler-Poisson system in the bound domain, Applied Mathematics and Computation
[5].Yeping Li and Wenan Yong, Zero Mach number limit of the compressible Navier-Stokes-Korteweg equations, Comm. Math. Sci.,
[6].Yeping Li and Wenan Yong, Quasi-neutral limit in a three-dimensional compressible Navier-Stokes-Poisson-Korteweg model, IMA Journal of Applied Mathematics,
[7].Yeping Li and Zhiming Zhou, Relaxation-time limit in the multi-dimensional bipolar nonisentropic Euler-Poisson systems, J. Differential Equations,
[8].Yeping Li and Wenan Yong, Zero Mach number limit of compressible viscous magnetohydrodynamic equations, Chinese Annals of Mathematics, Series B,
[9].Yeping Li, Global existence and asymptotic behavior of the solutions to the 3D bipolar non-isentropic Euler-Poisson equation, Nonlinear Analysis-Modelling and Control,
[10].Zhiyuan Zhao and Yeping Li, Global existence and optimal decay rate of the compressible bipolar Navier-Stokes-Poisson equations with external force, Nonlinear Analysis: Real World Applications,
[11].Yeping Li, Global existence and large time behavior of solutions for the bipolar quantum hydrodynamic models in the quarter plane, Mathematical Methods in Applied Sciences, 36(2013), 1409-1422.
[12].Yeping Li, Global existence and asymptotic behavior of smooth solutions to a bipolar Euler-Poisson equations in a bound domain, Z.angew Math. Phys.
[13].Yeping Li, Asymptotic behavior and quasineutral limit for the one-dimensional bipolar Euler-Poisson system with boundary effects, Chinese Annals of Mathematics, Series B,
[14].Xuemin Zhang and Yeping Li, Zero-electron-mass limit and zero-relaxation-time limit in a multi-dimensional stationary bipolar Euler-Poisson system, Applied Mathematics and Computation,
[15].Zhiyuan Zhao and Yeping Li, Existence and optimal decay rate of the compressible non-isentropic Navier-Stokes-Poisson models with external force, Nonlinear Analysis: Theory, Methods & Applications,
[16].Yeping Li, Convergence of the compressible magnetohydrodynamic equations to incompressible magnetohydrodynamic equations, Journal of Differential Equations,
[17].Yeping Li and Xiongfeng Yang, Global existence and asymptotic behavior of the solutions to the three dimensional bipolar Euler-Poisson systems, Journal of Differential Equations,
[18].Yeping Li, Relaxation-time limit of the three-dimensional hydrodynamic model with boundary effects, Mathematical Methods in Applied Sciences,
[19].Yeping Li, Existence and some limit analysis of stationary solutions for a multi-dimensional bipolar Euler-Poisson system,Discrete and Continuous Dynamical System,
[20].Yeping Li and Ting Zhang, Relaxation-time limit of the multidimensional bipolar hydrodynamic model in Besov space, Journal of Differential Equations,
[21].Yeping Li, Long-time self-similarity of classical solutions to the bipolar quantum hydrodynamic models, Nonlinear Analysis: Theory, Methods & Applications,
[22].Yeping Li, The combined semiclassical and relaxation limit in a quantum hydrodynamic semiconductor model, Proceedings of the royal society of Edinburgh,
[23].Jianfeng Mao, Fang Zhou and Yeping Li, Some limit analysis in a one-dimensional stationary quantum hydrodynamic model for semiconductors, J.Math.Anal.Appl.
[24].Yeping Li, Relaxation limit and initial layer analysis of a bipolar isentropic hydrodynamic model for semiconductors, Mathematical and Computer Modelling,
[25].Yeping Li, From a multidimensional quantum hydrodynamic model to the classical drift diffusion equation, Quarterly of Applied Mathematics,
[26].Huang Feimin and Li Yeping, Large time behavior and quasineutral limit of solutions to a bipolar hydrodynamic model with large data and vacuum, Discrete and Continuous Dynamical System-Series A,
[27].Yeping Li and Jizhou Zhang, Stationary solutions for a multi-dimensional nonisentropic hydrodynamic model for semiconductors, Mathematical and Computer Modelling
[28].Yeping Li, Stationary solutions for a one-dimensional nonisentropic hydrodynamic model for semiconductors, Acta Mathematica Scientia, Series B
[29].Yeping Li, Asymptotic behavior of the solutions to the one-dimensional nonisentropic hydrodynamic model for semiconductors, Wuhan Univ. J. Nat.Sci
[30].Yeping Li, Global smooth solution for a one dimensional noisentropic hydrodynamic model with non-constant lattice temperature, Z.angew Math. Phys.
[31].Yeping Li, Diffusion relaxation limit of a nonisentropic hydrodynamic model for semiconductors, Math. Methods Appl. Sci.al nonisentropic hydrodynamic model for semiconductors,Nonlinear Analysis:Real World Applictions,
[32].Yeping Li, Asymptotic profile in a multi-dimensional nonisentropic hydrodynamic model for semiconductors,Nonlinear Analysis:Real World Applictions
[33].Yeping Li, Global existence and asymptotic behavior for a multidimensional nonisentropic hydrodynamic semiconductor model with the heat source, Journal of Differential Equations
[34].Yeping Li, Large time behavior of the solutions for a multidimensional nonisentropic hydrodynamic model for semiconductors, Proceedings of the Edinburgh Mathematical Society
[35].Yeping Li, The Cauchy-Neumann problem for a multidimensioal nonisentropic hydrodynamic semiconductor model, Nonlinearity,
[36].Li Yeping, Zhang Shaohua and Meng Peiyuan, On the unconditional robust stability for the multidelays interval coefficient control system, Ann. Differential Equations。