馮斌華,男,1985年生於甘肅省通渭縣。2013年6月博士畢業於蘭州大學(碩博連讀),導師是鐘承奎教授和趙敦教授。2013年7月到西北師範大學數學與統計學院工作,2014年12月聘為碩士生導師,2015年7月評為副教授。現為西北師範大學數學與統計學院副教授,碩士生導師,美國數學會《Math Review》評論員。
基本介紹
- 中文名:馮斌華
- 國籍:中國
- 出生地:甘肅省通渭縣
- 出生日期:1985年
- 職業:教師
- 畢業院校:甘肅省通渭縣
- 學位/學歷:博士
- 專業方向:偏微分方程與數學物理
- 職務:西北師範大學數學與統計學院碩士生導師
- 職稱:副教授
研究方向,專業成就,科研項目,科研論文,
研究方向
偏微分方程與數學物理,主要研究玻色-愛因斯坦凝聚中的偏微分方程。
專業成就
已在J.Differential Equations、J. Evolution Equations、Discrete Contin. Dyn. Syst.、Commun. Pure Appl. Anal.、J. Math. Phys.、Discrete Contin. Dyn. Syst. Ser. B、Nonlinear Anal.等分析類和方程類權威雜誌上發表SCI論文30餘篇,其中SCI一區論文3篇,二區論文10篇,ESI高被引論文3篇。目前主持國家自然科學基金青年基金1項,已完成甘肅省自然科學基金1項,甘肅省高等學校科研項目1項。參與國家自然科學基金面上項目2項,青年基金2項。連續兩屆入選西北師範大學教學科研之星計畫。擔任J.Differential Equations、Nonlinearity、ZAMP等20餘種SCI雜誌的審稿人。
科研項目
- 國家自然科學基金青年項目,11601435,兩類非線性薛丁格方程的最優控制問題,2017/01-2019/12,主持
- 國家自然科學基金面上項目,11671322,一般區域上Minkowsky空間中平均曲率方程研究,2017/01-2020/12,參加
- 國家自然科學基金青年項目,11501455,具有非局部初始條件的抽象發展方程解的存在性和漸近性態,2016/01-2018/12,參加
- 國家自然科學基金青年項目,11401478,非單調的時滯非局部擴散方程和系統的行波解,2015/01-2017/12,參加
- 國家自然科學基金面上項目,11171028,與變分法有關的橢圓型方程與方程組問題,2012/01-2015/12,參加
6.甘肅省自然科學基金,帶阻尼薛丁格方程的研究,2016/06-2018/12
7.甘肅省高等學校科研項目,X射線自由電子雷射薛丁格方程的其次和問題,2016/01-2017/12
科研論文
[32]Binhua Feng*, R. Chen, J. Ren,Existence of stable standing waves for the fractional Schr\"{o}dinger equations with combined power-type and Choquard-type nonlinearities,Journal of Mathematical Physics, Accepted.
[31]Van Duong Dinh,Binhua Feng*,On fractional nonlinear Schr\"odinger equation with combined power-type nonlinearities,Discrete and Continuous Dynamical Systems, Accepted.
[30] Wang, Kai; Zhao, Dun;Binhua Feng,Optimal bilinear control of the coupled nonlinear Schrödinger system.Nonlinear Anal. Real World Appl.47(2019),142–167.
[29]Zhao, Yanjun,Binhua Feng*,Existence and regularity of global solutions nonlinear Hartree equations with Coulomb potentials and sublinear damping.Electron. J. Differential Equations,2018, 163.
[28]Binhua Feng*, Dun Zhao. On the Cauchy problem for the XFEL Schrödinger equation.Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4171-4186.
[27]Binhua Feng*,Ren, Jiajia;Wang, KaiBlow-up in several points for the Davey-Stewartson system in R^2.J. Math. Anal. Appl.466(2018),no. 2,1317–1326.
[26]Zheng, Jun;Binhua Feng,Zhao, PeihaoA remark on the two-phase obstacle-type problem for the p-Laplacian.Adv. Calc. Var.11(2018),no. 3,325–334.
[25]Wang, Kai;Zhao, Dun;Binhua Feng,Optimal nonlinearity control of Schrödinger equation.Evol. Equ. Control Theory7(2018),no. 2,317–334.
[24]Binhua Feng*,On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities.Commun. Pure Appl. Anal.17(2018),no. 5,1785–1804.
[23]Binhua Feng*,Yuan, Xiang XiaGlobal existence for solutions of fractional Hartree equations with time-dependent damping gain. (Chinese)J. Jilin Univ. Sci.56(2018),no. 3,475–480.
[22]Binhua Feng*,Zhang, HonghongStability of standing waves for the fractional Schrödinger-Choquard equation.Comput. Math. Appl.75(2018),no. 7,2499–2507.
[21]Binhua Feng*,On the blow-up solutions for the nonlinear Schrödinger equation with combined power-type nonlinearities.J. Evol. Equ.18(2018),no. 1,203–220.
[20]Binhua Feng*,Yuan, Xiangxia;Zheng, JunGlobal well-posedness for the Gross-Pitaevskii equation with pumping and nonlinear damping.Z. Anal. Anwend.37(2018),no. 1,73–82.
[19]Binhua Feng*,Zhang, HonghongStability of standing waves for the fractional Schrödinger-Hartree equation.J. Math. Anal. Appl.460(2018),no. 1,352–364.
[18]Binhua Feng*,Zhang, Honghong;Zhao, YanjunStability of the Hartree equation with time-dependent coefficients.Bound. Value Probl.2017,Paper No. 129.
[17]Zheng, Jun;Binhua Feng,Zhao, PeihaoRegularity of minimizers in the two-phase free boundary problems in Orlicz-Sobolev spaces.Z. Anal. Anwend.36(2017),no. 1,37–47.
[16]Binhua Feng*,Averaging of the nonlinear Schrödinger equation with highly oscillatory magnetic potentials.Nonlinear Anal.156(2017),275–285.
[15]Binhua Feng*,Wang, KaiOptimal bilinear control of nonlinear Hartree equations with singular potentials.J. Optim. Theory Appl.170(2016),no. 3,756–771.
[14]Binhua Feng*,Sharp threshold of global existence and instability of standing wave for the Schrödinger-Hartree equation with a harmonic potential.Nonlinear Anal. Real World Appl.31(2016),132–145.
[13]Binhua Feng*,Zhao, DunOptimal bilinear control of Gross-Pitaevskii equations with Coulombian potentials.J. Differential Equations260(2016),no. 3,2973–2993.
[12]Binhua Feng*,Yuan, XiangxiaOn the Cauchy problem for the Schrödinger-Hartree equation.Evol. Equ. Control Theory4(2015),no. 4,431–445.
[11]Zheng, Jun;Binhua Feng,Zhao, PeihaoPorosity of the free boundary for quasilinear parabolic variational problems.Bound. Value Probl.2015,2015:202, 11.
[10]Binhua Feng*,Cai, YuanConcentration for blow-up solutions of the Davey-Stewartson system in R3.Nonlinear Anal. Real World Appl.26(2015),330–342.
[9]Zheng, Jun;Binhua Feng,Zhang, ZhihuaRegularity of solutions to the G-Laplace equation involving measures.Z. Anal. Anwend.34(2015),no. 2,165–174.
[8]Binhua Feng*,Zhao, DunGlobal well-posedness for nonlinear Schrödinger equations with energy-critical damping.Electron. J. Differential Equations2015,No. 06, 9.
[7]Binhua Feng*,Zhao, Dun;Sun, ChunyouHomogenization for nonlinear Schrödinger equations with periodic nonlinearity and dissipation in fractional order spaces.Acta Math. Sci. Ser. B (Engl. Ed.)35(2015),no. 3,567–582.
[6]Binhua Feng*,Zhao, Dun;Chen, PengyuOptimal bilinear control of nonlinear Schrödinger equations with singular potentials.Nonlinear Anal.107(2014),12–21.
[5]Binhua Feng*,Zhao, Dun;Sun, ChunyouOn the Cauchy problem for the nonlinear Schrödinger equations with time-dependent linear loss/gain.J. Math. Anal. Appl.416(2014),no. 2,901–923.
[4]Chen, Pengyu;Li, Yongxiang;Chen, Qiyu;Binhua Feng,On the initial value problem of fractional evolution equations with noncompact semigroup.Comput. Math. Appl.67(2014),no. 5,1108–1115.
[3]Binhua Feng*,Liu, Jiayin;Zheng, JunOptimal bilinear control of nonlinear Hartree equation in R^3Electron. J. Differential Equations2013,No. 130, 14.
[2]Binhua Feng*,Ground states for the fractional Schrödinger equation.Electron. J. Differential Equations2013,No. 127, 11.
[1]Binhua Feng*,Zhao, Dun;Sun, ChunyouThe limit behavior of solutions for the nonlinear Schrödinger equation including nonlinear loss/gain with variable coefficient.J. Math. Anal. Appl.405(2013),no. 1,240–251.