《非線性特徵值問題及其相關問題》是依託蘇州大學,由黃毅生擔任項目負責人的面上項目。
基本介紹
- 中文名:非線性特徵值問題及其相關問題
- 項目類別:面上項目
- 項目負責人:黃毅生
- 依託單位:蘇州大學
《非線性特徵值問題及其相關問題》是依託蘇州大學,由黃毅生擔任項目負責人的面上項目。
《非線性特徵值問題的理論分析及計算》是依託復旦大學,由蘇仰鋒擔任項目負責人的面上項目。項目摘要 非線性特徵值問題在眾多科學工程中有著廣泛的套用。本課題將對於關於特徵值非線性這類非線性特徵值問題展開研究。研究內容包括:多項式...
的非零解問題稱為非線性特徵值問題。這裡當然是假定了T(θ,λ)呏θ。對應的λ稱為非線性特徵值,而解 x≠θ則稱為特徵元。線性運算元方程的特徵集合是線性子空間,但一般的非線性運算元方程的非零解集={(x,λ)|T(x,λ)=θ,x≠...
《幾類矩陣最佳化問題的算法設計及其理論和套用》是依託中國科學院數學與系統科學研究院,由劉歆擔任項目負責人的青年科學基金項目。項目摘要 矩陣奇異值分解、非線性特徵值計算、主成分分析、張量分析、0-1整數規劃等重要的數學模型被廣泛套用...
2.4.1Dirichlet 問題18 2.4.2非線性特徵值問題18 2.4.3結論24 第3章一類反應擴散方程的多層分塊類小波增量未知元25 3.1多層分塊類小波增量未知元25 3.2逼近格式及其等價形式29 3.3關於範數的三個引理33 3.4顯格式和半隱...
《非線性Kohn-Sham方程可靠性高精度數值方法的研究》是依託北京大學,由胡俊擔任項目負責人的面上項目。項目摘要 Kohn-Sham方程是描述物質微觀結構特別是物質電子結構的重要模型,其特徵函式具有局部的奇異性(高振盪性)。對於這一問題,...
由於套用上的需要,對各種具體的非線性特徵值問題的研究,一直在進行,但到60年代後期,P.H.拉賓諾維茨運用非線性泛函分析的工具,才發展出一種系統的方法。此外,以多介質為實際背景的多點邊值問題與特徵值問題的研究,也不斷出現。特...
《正交約束最佳化問題及其套用》是依託上海交通大學,由文再文擔任項目負責人的青年科學基金項目。項目摘要 變數是正交矩陣的最佳化問題出現在科學與工程中的很多重大套用中,如p-調和流理論,線性與非線性特徵值問題, 組合最佳化問題的鬆弛解,二...
本項目研究數據缺損下的矩陣低秩分解及其相關問題。我們在最優模型問題的多解性穩定性理論、正則化策略和方法及其數值算法與分析、低秩分解的非線性流形約束、非線性流形的自適應方法、多源數據的降維模型設計與計算,以及稀疏恢復新方法及其...
數值代數、特徵值反問題及其套用、非線性特徵值問題、黎曼流形上的最佳化算法及其套用 出版圖書 學術成果 基金情況 2017.01-2020.12 國家自然科學基金面上項目 (項目批准號:11671337),主持人 2013.01-2016.12 國家自然科學基金面上項目 ...
非線性特徵值問題及其相關問題 國家自然科學基金項目 黃毅生 2011.1-2013.12 兩類隨機過程的局部漸近理論及在保險中的套用 國家自然科學基金項目 王岳寶 2011.1-2013.12 無線感測器網路布局與拓撲映射方法 國家自然科學基金項目 惲自求 2011.1-...
2.《Heisenberg群上非線性方程的特徵值問題》獲南京市第四屆自然科學優秀學術論文. 3.《Heisenberg群上擬線性次橢圓方程的可解性》獲南京市科協第十屆優秀學術論文獎. 4.《四階非線性橢圓問題的一些存在性結果》獲南京市第五屆自然科...
4 光子晶體平板波導特徵值問題的數值計算 4.1 已有的數值計算方法 4.2 問題描述 4.3 線性特徵值問題 4.4 非線性特徵值問題 4.5 數值實驗 4.6 本章小結 5 交叉光柵散射問題的數值計算 5.1 已有的數值計算方法 5.2 ...
2.一個帶邊界攝動的非線性特徵值問題,福建師大學報,1990(3)3.一類四階非線性方程解的估計,現代數學和力學,蘭州大學出版社,(程昌鈞,郭仲衡主編,第四卷),1991.8 4.一類三階非線性Robin問題的內層現象,福建師大學報,1991(4)5.奇...