非線性物理科學:變換群和李代數

非線性物理科學:變換群和李代數

基本介紹

  • 書名:非線性物理科學:變換群和李代數
  • 作者:伊布拉基莫夫 (Nail H.Ibragimov)
  • 出版日期:2013年3月1日
  • 語種:簡體中文, 英語
  • ISBN:9787040367416
  • 外文名:Transformation Groups and Lie Algebras
  • 出版社:高等教育出版社
  • 頁數:185頁
  • 開本:16
  • 品牌:高教社
基本介紹,內容簡介,作者簡介,圖書目錄,

基本介紹

內容簡介

《非線性物理科學:變換群和李代數(英文版)》通俗易懂、敘述清晰,並提供豐富的模型,能幫助讀者輕鬆地逐步深入各種主題。

作者簡介

作者:(瑞典)伊布拉基莫夫(Nail H.Ibragimov)

伊布拉基莫夫,教授為瑞士科學家,被公認為是在微分方程對稱分析方面世界上最具權威的專家之一。他發起並構建了現代群分析理論,並推動了該理論在多方面的套用。

圖書目錄

Preface
Part Ⅰ Local Transformation Groups
Preliminaries
1.1 Changes of frames of reference and point transformations
1.1.1 Translations
1.1.2 Rotations
1.1.3 Galilean transformation
1.2 Introduction of transformation groups
1.2.1 Definitions and examples
1.2.2 Different types of groups
1.3 Some useful groups
1.3.1 Finite continuous groups on the straight line
1.3.2 Groups on the plane
1.3.3 Groups in IRn
Exercises to Chapter 1
2 One-parameter groups and their invariants
2.1 Local groups of transformations
2.1.I Notation and definition
2.1.2 Groups written in a canonical parameter
2.1.3 Infinitesimal transformations and generators
2.1.4 Lie equations
2.1.5 Exponential map
2.1.6 Determination of a canonical parameter
2.2 Invariants
2.2.1 Definition and infinitesimal test
2.2.2 Canonical variables
2.2.3 Construction of groups using canonical variables
2.2.4 Frequently used groups in the plane
2.3 Invariant equations
2.3.1 Definition and infinitesimal test
2.3.2 Invariant representation of invariant manifolds
2.3.3 Proof of Theorem 2.9
2.3.4 Examples on Theorem 2.9
Exercises to Chapter 2
3 Groups admitted by differential equations
3.1 Preliminaries
3.1.1 Differential variables and functions
3.1.2 Point transformations
3.1.3 Frame of differential equations
3.2 Prolongation of group transformations
3.2.1 One-dimensional case
3.2.2 Prolongation with several differential variables
3.2.3 General case
3.3 Prolongation of group generators
3.3.1 One-dimensional case
3.3.2 Several differential variables
3.3.3 General case
3.4 First definition of symmetry groups
3.4.1 Definition
3.4.2 Examples
3.5 Second definition of symmetry groups
3.5.1 Definition and determining equations
3.5.2 Determining equation for second-order ODEs
3.5.3 Examples on solution of determining equations
Exercises to Chapter 3
4 Lie algebras of operators
4.1 Basic definitions
4.1.1 Commutator
4.1.2 Properties of the commutator
4.1.3 Properties of determining equations
4.1.4 Lie algebras
4.2 Basic properties
4.2.1 Notation
4.2.2 Subalgebra and ideal
4.2.3 Derived algebras
4.2.4 Solvable Lie algebras
4.3 Isomorphism and similarity
4.3.1 Isomorphic Lie algebras
4.3.2 Similar Lie algebras
4.4 Low-dimensional Lie algebras
4.4.1 One-dimensional algebras
4.4.2 Two-dimensional algebras in the plane
4.4.3 Three-dimensional algebras in the plane
4.4.4 Three-dimensional algebras in IR3
4.5 Lie algebras and multi-parameter groups
4.5.1 Definition of multi-parameter groups
4.5.2 Construction of multi-parameter groups
Exercises to Chapter 4
5 Galois groups via symmetries
5.1 Preliminaries
5.2 Symmetries of algebraic equations
5.2.1 Determining equation
5.2.2 First example
5.2.3 Second example
5.2.4 Third example
5.3 Construction of Galois groups
5.3.1 First example
5.3.2 Second example
5.3.3 Third example
5.3.4 Concluding remarks
Assignment to Part Ⅰ
Part Ⅱ Approximate Transformation Groups
6 Preliminaries
6.1 Motivation
6.2 A sketch on Lie transformation groups
6.2.1 One-parameter transformation groups
6.2.2 Canonical parameter
6.2.3 Group generator and Lie equations
6.2.4 Exponential map
6.3 Approximate Cauchy problem
6.3.1 Notation
6.3.2 Definition of the approximate Cauchy problem
7 Approximate transformations
7.1 Approximate transformations defined
7.2 Approximate one-parameter groups
7.2.1 Introductory remark
7.2.2 Definition of one-parameter approximate transformation groups
7.2.3 Generator of approximate transformation group
7.3 Infinitesimal description
7.3.1 Approximate Lie equations
7.3.2 Approximate exponential map
Exercises to Chapter 7
8 Approximate symmetries
8.1 Definition of approximate symmetries
8.2 Calculation of approximate symmetries
8.2.1 Determining equations
8.2.2 Stable symmetries
8.2.3 Algorithm for calculation
8.3 Examples
8.3.1 First example
8.3.2 Approximate commutator and Lie algebras
8.3.3 Second example
8.3.4 Third example
Exercises to Chapter 8
Applications
9.1 Integration of equations with a small parameter using
approximate symmetries
9.1.1 Equation having no exact point symmetries
9.1.2 Utilization of stable symmetries
9.2 Approximately invariant solutions
9.2.1 Nonlinear wave equation
9.2.2 Approximate travelling waves of KdV equation
9.3 Approximate conservation laws
Exercises to Chapter 9
Assignment to Part Ⅱ
Bibliography
Index

相關詞條

熱門詞條

聯絡我們