電動車轉向控制裝置

電動車轉向控制裝置,其包括方向控制龍頭、前叉及至少一對感測組件和被感測組件。感測組件和被感測組件分別設於方向控制龍頭及前叉上,感測組件與被感測組件相互對應動作,在方向控制龍頭與前叉為相對直行位置時,被感測組件產生控制電動車馬達高速運轉的通路信號;以及,方向控制龍頭及前叉為向左或向右轉向偏移時,使被感測組件產生控制電動車馬達減速或停止轉動的斷路信號。從而避免速度過快而產生打滑或翻車的意外。

基本介紹

  • 中文名:電動車轉向控制裝置
  • 機械轉向系:以駕駛員的體力作為轉向能源
  • 轉向操縱機構方向盤、轉向軸、轉向管柱
  • 轉向器齒輪機構
主要結構,轉向操縱機構,轉向器,轉向傳動機構,設計趨勢,適應汽車高速行駛的需要,充分考慮安全性、輕便性,低成本、低油耗、大批量專業化生產,汽車轉向器裝置的電腦化,發展趨勢,現代汽車轉向裝置的使用動態,循環球式轉向器特點,轉向器生產專業化,動力轉向是發展方向,常見故障,方向跑偏,方向擺頭,轉彎時轉向沉重,轉彎時轉向不足,前輪最大偏轉角的調整,養護方法,定期檢查儲液缺罐內動力轉向液液面高度,動力轉向系的清洗、換油與保護,

主要結構

機械轉向系以駕駛員的體力作為轉向能源,其中所有傳力件都是機械的。機械轉向系由轉向操縱機構、轉向器和轉向傳動機
構三大部分組成。

轉向操縱機構

轉向操縱機構由方向盤、轉向軸、轉向管柱等組成,它的作用是將駕駛員轉動轉向盤的操縱力傳給轉向器。

轉向器

轉向器(也常稱為轉向機)是完成由旋轉運動到直線運動(或近似直線運動)的一組齒輪機構,同時也是轉向系中的減速傳動裝置。較常用的有齒輪齒條式、循環球曲柄指銷式、蝸桿曲柄指銷式、循環球-齒條齒扇式、蝸桿滾輪式等。我們主要介紹前幾種。
1)齒輪齒條式轉向器
齒輪齒條式轉向器分兩端輸出式和中間(或單端)輸出式兩種。
兩端輸出的齒輪齒條式轉向器如圖4所示,作為傳動副主動件的轉向齒輪軸11通過軸承12和13安裝在轉向器殼體5中,其上端通過花鍵與萬向節叉10和轉向軸連線。與轉向齒輪嚙合的轉向齒條4水平布置,兩端通過球頭座3與轉向橫拉桿1相連。彈簧7通過壓塊9將齒條壓靠在齒輪上,保證無間隙嚙合。彈簧的預緊力可用調整螺塞6調整。當轉動轉向盤時,轉向器齒輪11轉動,使與之嚙合的齒條4沿軸向移動,從而使左右橫拉桿帶動轉向節左右轉動,使轉向車輪偏轉,從而實現汽車轉向。中間輸出的齒輪齒條式轉向器如圖5所示,其結構及工作原理與兩端輸出的齒輪齒條式轉向器基本相同,不同之處在於它在轉向齒條的中部用螺栓6與左右轉向橫拉桿7相連。在單端輸出的齒輪齒條式轉向器上,齒條的一端通過內外托架與轉向橫拉桿相連。
循環球式轉向器是目前國內外套用最廣泛的結構型式之一, 一般有兩級傳動副,第一級是螺桿螺母傳動副,第二級是齒條齒扇傳動副。為了減少轉向螺桿轉向螺母之間的摩擦,二者的螺紋並不直接接觸,其間裝有多個鋼球,以實現滾動摩擦。轉向螺桿和螺母上都加工出斷面輪廓為兩段或三段不同心圓弧組成的近似半圓的螺旋槽。二者的螺旋槽能配合形成近似圓形斷面的螺旋管狀通道。螺母側面有兩對通孔,可將鋼球從此孔塞入螺旋形通道內。轉向螺母外有兩根鋼球導管,每根導管的兩端分別插入
螺母側面的一對通孔中。導管內也裝滿了鋼球。這樣,兩根導管和螺母內的螺旋管狀通道組合成兩條各自獨立的封閉的鋼球"流道"。轉向螺桿轉動時,通過鋼球將力傳給轉向螺母,螺母即沿軸向移動。同時,在螺桿及螺母與鋼球間的摩擦力偶作用下,所有鋼球便在螺旋管狀通道內滾動,形成"球流"。在轉向器工作時,兩列鋼球只是在各自的封閉流道內循環,不會脫出。
3)蝸桿曲柄指銷式轉向器
蝸桿曲柄指銷式轉向器的傳動副(以轉向蝸桿為主動件,其從動件是裝在搖臂軸曲柄端部的指銷。轉向蝸桿轉動時,與之嚙合的指銷即繞搖臂軸軸線沿圓弧運動,並帶動搖臂軸轉動。

轉向傳動機構

轉向傳動機構的功用是將轉向器輸出的力和運動傳到轉向橋兩側的轉向節,使兩側轉向輪偏轉,且使二轉向輪偏轉角按一定關係變化,以保證汽車轉向時車輪與地面的相對滑動儘可能小。
1)與非獨立懸架配用的轉向傳動機構
與非獨立懸架配用的轉向傳動機構主要包括轉向搖臂2、轉向直拉桿3轉向節臂4和轉向梯形。在前橋僅為轉向橋的情況下,由轉向橫拉桿6和左、右梯形臂5組成的轉向梯形一般布置在前橋之後,如圖9 a所示。當轉向輪處於與汽車直線行駛相應的中立位置時,梯形臂5與橫拉桿6在與道路平行的平面(水平面)內的交角>90。
發動機位置較低或轉向橋兼充驅動橋的情況下,為避免運動干涉,往往將轉向梯形布置在前橋之前,此時上述交角<90,如圖9 b所示。若轉向搖臂不是在汽車縱向平面內前後擺動,而是在與道路平行的平面向左右搖動,則可將轉向直拉桿3橫置,並借球頭銷直接帶動轉向橫拉桿6,從而推使兩側梯形臂轉動。
2)與獨立懸架配用的轉向傳動機構
當轉向輪獨立懸掛時,每個轉向輪都需要相對於車架作獨立運動,因而轉向橋必須是斷開式的。與此相應,轉向傳動機構中的轉向梯形也必須是斷開式的。
3)轉向直拉桿
轉向直拉桿的作用是將轉向搖臂傳來的力和運動傳給轉向梯形臂(或轉向節臂)。它所受的力既有拉力、也有壓力,因此直拉桿都是採用優質特種鋼材製造的,以保證工作可靠。直拉桿的典型結構如圖11所示。在轉向輪偏轉或因懸架彈性變形而相對於車架跳動時,轉向直拉桿與轉向搖臂及轉向節臂的相對運動都是空間運動,為了不發生運動干涉,上述三者間的連線都採用球銷。
4)轉向減振器
隨著車速的提高,現代汽車的轉向輪有時會產生擺振(轉向輪繞主銷軸線往復擺動,甚至引起整車車身的振動),這不僅影響汽車的穩定性,而且還影響汽車的舒適性、加劇前輪輪胎的磨損。在轉向傳動機構中設定轉向減振器是克服轉向輪擺振的有效措施。轉向減振器的一端與車身(或前橋)鉸接,另一端與轉向直拉桿(或轉向器)鉸接。

設計趨勢

適應汽車高速行駛的需要

從操縱輕便性、穩定性及安全行駛的角度,汽車製造廣泛使用更先進的工藝方法,使用變速比轉向器、高剛性轉向器。“變速比和高剛性”是世界上生產的轉向器結構的方向。

充分考慮安全性、輕便性

隨著汽車車速的提高,駕駛員和乘客的安全非常重要,目前國內外在許多汽車上已普遍增設能量吸收裝置,如防碰撞安全轉向柱、安全帶、安全氣囊等,並逐步推廣。從人類工程學的角度考慮操縱的輕便性,已逐步採用可調整的轉向管柱和動力轉向系統。

低成本、低油耗、大批量專業化生產

隨著國際經濟形勢的惡化,石油危機造成經濟衰退,汽車生產愈來愈重視經濟性,因此,要設計低成本、低油耗的汽車和低成本、合理化生產線,儘量實現大批量專業化生產。對零部件生產,特別是轉向器的生產,更表現突出。

汽車轉向器裝置的電腦化

汽車的轉向器裝置,必定是以電腦化為唯一的發展途徑。

發展趨勢

現代汽車轉向裝置的使用動態

隨著汽車工業的迅速發展,轉向裝置的結構也有很大變化。汽車轉向器的結構很多,從使用的普遍程度來看,主要的轉向器類型有4種:有蝸桿肖式(WP型)、蝸桿滾輪式(WR型)、循環球式(BS型)、齒條齒輪式(RP型)。這四種轉向器型式,已經被廣泛使用在汽車上。
據了解,在世界範圍內,汽車循環球式轉向器占45%左右,齒條齒輪式轉向器占40%左右,蝸桿滾輪式轉向器占10%左右,其它型式的轉向器占5%。循環球式轉向器一直在穩步發展。在西歐小客車中,齒條齒輪式轉向器有很大的發展。日本汽車轉向器的特點是循環球式轉向器占的比重越來越大,日本裝備不同類型發動機的各類型汽車,採用不同類型轉向器,在公共汽車中使用的循環球式轉向器,已由60年代的62.5%,發展到現今的100%了(蝸桿滾輪式轉向器在公共汽車上已經被淘汰)。大、小型貨車大都採用循環球式轉向器,但齒條齒輪式轉向器也有所發展。微型貨車用循環球式轉向器占65%,齒條齒輪式占35%。
綜合上述對有關轉向器品種的使用分析,得出以下結論:
·循環球式轉向器和齒輪齒條式轉向器,已成為當今世界汽車上主要的兩種轉向器;而蝸輪#0;蝸桿式轉向器和蝸桿肖式轉向器,正在逐步被淘汰或保留較小的地位。
·在小客車上發展轉向器的觀點各異,美國和日本重點發展循環球式轉向器,比率都已達到或超過90%;西歐則重點發展齒輪齒條式轉向器,比率超過50%,法國已高達95%。
·由於齒輪齒條式轉向器的種種優點,在小型車上的套用(包括小客車、小型貨車或客貨兩用車)得到突飛猛進的發展;而大型車輛則以循環球式轉向器為主要結構。

循環球式轉向器特點

·循環球式轉向器的特點是:效率高,操縱輕便,有一條平滑的操縱力特性曲線。
·布置方便。特別適合大、中型車輛和動力轉向系統配合使用;易於傳遞駕駛員操縱信號;逆效率高、回位好,與液壓助力裝置的動作配合得好。
·可以實現變速比的特性,滿足了操縱輕便性的要求。中間位置轉向力小、且經常使用,要求轉向靈敏,因此希望中間位置附近速比小,以提高靈敏性。大角度轉向位置轉向阻力大,但使用次數少,因此希望大角度位置速比大一些,以減小轉向力。由於循環球式轉向器可實現變速比,套用正日益廣泛。
·通過大量鋼球的滾動接觸來傳遞轉向力,具有較大的強度和較好的耐磨性。並且該轉向器可以被設計成具有等強度結構,這也是它套用廣泛的原因之一。
·變速比結構具有較高的剛度,特別適宜高速車輛車速的提高。高速車輛需要在高速時有較好的轉向穩定性,必須保證轉向器具有較高的剛度。
·間隙可調。齒條齒扇副磨損後可以重新調整間隙,使之具有合適的轉向器傳動間隙,從而提高轉向器壽命,也是這種轉向器的優點之一。
中國的轉向器生產,除早期投產的解放牌汽車用蝸桿#0;滾輪式轉向器,東風汽車用蝸桿肖式轉向器之外,其它大部分車型都採用循環球式結構,並都具有一定的生產經驗。解放、東風也都在積極發展循環球式轉向器,並已在第二代換型車上普遍採用了循環球式轉向器。由此看出,中國的轉向器也在向大量生產循環球式轉向器發展。

轉向器生產專業化

循環球式轉向器在國外實現了專業化生產,同時以專業廠為主、大力進行試驗和研究,大大提高了產品的產量和質量。在日本“精工”(NSK)公司的循環球式轉向器就以成本低、質量好、產量大,逐步占領日本市場,並向全世界銷售它的產品。德國ZF公司也作為一個大型轉向器專業廠著稱於世。它從1948年開始生產ZF型轉向器,年產各種轉向器200多萬台。還有一些比較大的轉向器生產廠,如美國德爾福公司SAGINAW分部;英國BURM#0;AN公司都是比較有名的專業廠家,都有很大的產量和銷售面。專業化生產已成為一種趨勢,只有走這條道路,才能使產品質量高、產量大、成本低,在市場上有競爭力。

動力轉向是發展方向

動力轉向系統的套用日益廣泛,不僅在重型汽車上必須裝備,在高級轎車上套用的也較多,在中型汽車上的套用也逐漸推廣。主要是從減輕駕駛員疲勞,提高操縱輕便性和穩定性出發;次要是從減小因在高速行駛中前輪突然爆胎而造成的事故出發。雖然帶來成本較高和結構複雜等問題,但由於優點明顯,還是得到很快的發展。
動力轉向有3種形式:整體式、半分置式及聯閥式動力轉向結構。3種形式各有特點,發展較快,整體式多用於前橋負荷3~8t汽車,聯閥式多用於前橋負荷5#0;18t汽車,半分置式多用於前橋負荷6t以上到超重型汽車。
從發展趨勢上看,國外整體式轉向器發展較快,而整體式轉向器中轉閥結構是發展的方向。

常見故障

方向跑偏

方向跑偏表現為:在行駛中,感到汽車自動偏向一邊,必須把方向盤用勁把住,才能保持正直的行駛方向。其原因是:左右輪胎氣壓不等;個別制動蹄片刮摩制動轂,或一邊車輪輪殼軸承過緊;個別鋼板彈簧折斷,兩邊鋼板彈力不均;前軸或車架彎曲;前輪定位失準或兩邊軸距不等;轉向節主銷與襯套間隙左右不一,或橫拉桿兩邊球頭鬆緊調整不一;貨車貨物裝載不均。

方向擺頭

方向擺頭表現為:汽車在行駛中,感到兩前輪左右搖擺,方向盤難以掌握。其原因是:橫直拉桿球頭調整過松(彈簧折斷或調整間隙過大);轉向盤自由行程過大;轉向器滾輪與蝸桿嚙合間隙過大;蝸桿上下軸承間隙過大;轉向節主銷與襯套的間隙過大;前輪輪殼軸承裝配過松,或前輪輪輞失圓擺差過大;前輪定位失準。

轉彎時轉向沉重

轉向沉重表現為:讓行駛的汽車轉彎時,轉動方向盤,感到沉重吃力。其原因是:蝸桿的上下軸調整得過緊或軸承損壞;蝸輪和蝸桿嚙合過緊,轉向器的轉向搖臂軸與襯套無間隙;轉向軸彎曲或管柱凹癟,互相刮碰;方向盤碰、磨管柱;轉向節上的推力軸承缺油或損壞;轉向節主銷與襯套裝配過緊或缺潤滑油;轉向節拉桿(直拉桿)螺塞旋得太緊,或拉桿接頭缺油;橫拉桿球頭調整過緊,或拉頭缺油;輪胎氣壓不足;前軸或車架彎曲,前輪定位失準。

轉彎時轉向不足

轉彎時轉向不足表現為:在汽車轉彎時的轉動量不夠。其原因是:轉向搖臂裝在搖臂軸上的位置不當;轉向角限位螺栓調整過長;前軸前後竄動;循環球或轉向器扇形齒與蝸桿盒裝配位置不妥。

前輪最大偏轉角的調整

前輪最大偏轉角(轉向角)的大小,影響到汽車轉彎時的轉向半徑(亦稱通過半徑),偏轉角越大,轉向半徑越小,汽車的機動性越強。
前輪最大偏轉角是通過前橋上的限位螺絲進行調整的。其方法是:將前橋頂起,轉動方向盤,使前輪偏轉至與相碰物(翼子板、橫拉桿、車架等)相距8~10mm,轉動限位螺絲,將車輪限止到此位置,此時的輪胎著地軌跡中心線與輪胎在直線行駛時的著地軌跡中心線之間的夾角為最大偏轉角。各種車型的最大偏轉角和最小轉向半徑不盡相同,調整前要參照汽車的使用說明書。

養護方法

現代原中高級轎車和重型汽車普遍採用動力轉向系統,不僅大大改善了汽車操縱輕便性,還提高了汽車行駛安全性。動力轉向系統是在機械轉向系的基礎上加設一套依靠發動機輸出動力的轉向加力裝置而形成的。轎車普遍採用齒輪條式動力轉向機構。這種轉向器結構簡單、操縱靈敏性高、轉向操縱輕便,而且由於轉向器完全封閉的,平時不需檢查調整。
動力轉向系統的養護主要是:

定期檢查儲液缺罐內動力轉向液液面高度

熱態時(約66℃,用手摸感覺燙手),其液面高度必須在HOT(熱)和COLD(冷)標記之間。如果是冷態(約為21℃),則液面高度必須在ADD(加)和CLOD(冷)標記之間。如果液面高度不符合要求,必須加注DEXRON2型動力轉向液(液力傳動油)。

動力轉向系的清洗、換油與保護

動力轉向系的清洗、換油與保護應在有動力轉向換油的設備的汽車養護中心進行,使用專用設備,用動力轉向系統強力清洗劑首先換出動力轉向系統中的舊油,然後用清洗劑清洗動力轉向系統,最後用新油(加動力轉向保護劑)再次換出動力轉向清洗劑,直至換油結束。動力轉向系的清洗、換油與保護作業通常應行駛5萬km進行一次。這樣能確保動力轉向系工作更安全更可靠,避免出現早期損壞,延長使用壽命。

相關詞條

熱門詞條

聯絡我們