離散範疇

離散範疇

範疇是範疇論的基本概念之一。離散範疇(discrete category)是一種特殊的範疇。即只有恆等態射的範疇。

在某種意義上來說,範疇論提煉了數學(甚至其他學科)各分支的共性,是比集合論更高一個層次的數學公共語言與工具。它使數學各個領域的研究通過箭頭圖做了一致化與簡單化的處理,更加顯示其本質上的東西,同時使許多數學系統的性質通過圖的泛性質得到了深刻的刻畫。

基本介紹

  • 中文名:離散範疇
  • 外文名:discrete category
  • 所屬學科範疇論
  • 定義:只有恆等態射的範疇
  • 性質:任何集合都可做成離散範疇
定義,性質,範疇論,範疇,小範疇,

定義

離散範疇是所有態射均為單位態射範疇

性質

若給定集合C,對任意A∈C,規定Hom(A,A)={1A},1A為A的單位態射,而對X≠Y,X,Y∈C,規定Hom(X,Y)=∅,則得以C為對象類的離散範疇。
任何集合S都可按此做成一個離散(小)範疇。任意離散範疇的對象類均為集合。故離散範疇就是集合。
離散範疇C為小範疇之充分必要條件是C的對象類為一個集合。

範疇論

範疇論是代數學的一個重要分支。數學的各個領域都有各自的研究對象。例如,集合論研究集合與映射;線性代數研究線性空間與線性映射;群論研究群與群同態;拓撲學研究拓撲空間與連續映射。在20世紀中期,數學家們認為有必要將各個領域中的研究對象各自合在一起成為一個整體,使之成為一種數學系統,這就是範疇思想.於是,所有的集合與映射組成集合範疇;所有的群與群同態組成群範疇。在各個範疇之間往往存在著內在聯繫與變換。例如,一個群模去其換位子群的商群(稱為交換化)得到一個交換群,從而交換化成為群範疇到交換群範疇的一個變換,且這個變換保持著群同態及其合成。事實上,這就是函子的思想。在域F上的線性空間範疇中,任一線性空間L必有惟一的對偶空間L=HomF(L,F),“*”可看成這個線性空間範疇到自身的一個變換。儘管當L為有限維時L與L是同構的(記這個同構為τ:L→L),但這個同構不是“自然”的.即,若L1與L2間有一個同構α:L1→L2,“*”誘導出L2到L1的一個同構為α,但對L1中的元素x來說,τα(x)一般地並不等於ατ(x)。這就引起“自然性”的研究。艾倫伯格(Eilenberg,S.)與麥克萊恩(MacLane,S.)於1945年發表的論文《自然等價的一般理論》為範疇論的建立作出了奠基性的工作。
在某種意義上來說,範疇論提煉了數學(甚至其他學科)各分支的共性,是比集合論更高一個層次的數學公共語言與工具。它使數學各個領域的研究通過箭頭圖做了一致化與簡單化的處理,更加顯示其本質上的東西,同時使許多數學系統的性質通過圖的泛性質得到了深刻的刻畫。戈德門特(Godement,R.)於1958年將範疇論套用到拓撲學,埃雷斯曼(Ehresmann,C.)於1958年將範疇論套用到微分幾何,格羅騰迪克(Grothendieck,A.)與迪厄多內(Dieudonné,J.)於1960年將範疇論套用到代數幾何.現在,範疇論在上述學科及同調代數、代數K理論、模論、環論等學科中都得到了成功的套用.套用範疇論時,關鍵是先搞清研究問題以什麼作對象,以什麼作態射。研究不同範疇之間的關係時,關鍵在於找到適當的函子。範疇論的核心是函子理論。艾倫伯格與麥克萊恩為了搞清某些同構(等價)的“自然”變換之精確含義,於1945年引入範疇與函子的概念去定義自然變換。現在,範疇論已滲透到現代數學的各個領域(甚至已套用到計算機科學等),成為現代數學的基礎。

範疇

範疇是範疇論的基本概念之一。稱C是一個範疇,是指C滿足下述六點:
1.C有一個對象類{A,B,C,…}(不要求它是一個集合,即不要求它滿足集合論的公理,只要求能判別出是不是它的對象),常記為ObjC或簡記C。
2.對C的任兩對象A,B,有一個確定的集合(可為空集)Hom(A,B),其元素稱為由A到B的態射,記為f∈Hom(A,B)或f:A→B。
3.對給定的f∈Hom(A,B)與g∈Hom(B,C)有惟一的gf∈Hom(A,C),稱為f與g的合成。
4.Hom(A,B)與Hom(C,D)有公共元是指A=C且B=D。
5.態射合成滿足結合律。
6.對C的任意對象A,Hom(A,A)至少有一個元素εA使對σ∈Hom(A,B)恆有σεA=σ=εBσ,稱εA為A的恆等態射(εB為B的恆等態射)。
例如,以一切集合作對象,以集合映射作態射,則得集合範疇Set(簡稱集範疇)。以一切拓撲空間作對象,以連續映射作態射,則得拓撲空間範疇Top.以一切環為對象,以環同態作為態射得環範疇Ring。類似地,可得群範疇Group,阿貝爾群範疇AG,環R上的左R模範疇RM等.以自然數為對象,a|b(表示a整除b)時定義Hom(a,b)有惟一元素φab,ab時定義Hom(a,b)=(空集),也得到一個範疇.一般地,對每個擬序集都可仿此定義範疇。

小範疇

小範疇是一種重要的常用範疇。一個範疇的全體對象一般地只成類而不是集合。當其對象類是一個集合時就稱此範疇為小範疇。例如,R為實數集,將實數作為對象,當a≤b時,規定Hom(a,b)=φab;當a>b時,規定Hom(a,b)=φ,即得一小範疇.更一般地,任何有序集(甚至擬序集)按其序仿此都可得到一個小範疇。

相關詞條

熱門詞條

聯絡我們