閃爍體探測器(ScintillationDetector)是利用電離輻射在某些物質中產生的閃光來進行探測的,也是當前套用最多、最廣泛的電離輻射探測器之一。
基本介紹
- 中文名:閃爍體探測器
- 外文名:Scintillation Detector
簡介
工作原理
閃爍體
- 有機閃爍體:有機晶體(如蒽、芪等)、有機液體、塑膠閃爍體
- 氣體閃爍體:如氬、氙等
- 發光效率高:能夠將入射帶電粒子的動能儘可能多地轉換為閃爍光子數
- 線性好:入射帶電粒子損耗的能量在很大範圍內與產生閃爍光子數保持線性關係
- 發射光譜與吸收光譜不重疊:閃爍體介質對自身發射光是透明的,不存在自吸收
- 發光衰減時間短:入射粒子產生閃光的持續時間短,探測器反應快
- 其它性質:加工性能好、折射率合適、原料易得且無毒、成本低廉等
- 無機閃爍體:這類閃爍體的發光機制以摻雜激活劑的鹼金屬鹵化物晶體最為典型。在此類晶體中各原子呈周期性排列,在原子核電場的作用下,原本屬於單個原子的核外電子可以以在相鄰原子間轉移,這樣的電子不再固定從屬於某個原子,而是從屬於整個晶體,這種現象稱為晶體中電子的共有化。原先孤立原子中的能級也相互交錯重疊形成晶體能帶,這些能帶又可分為價帶與導帶,二者之間存在一定寬度的禁帶。當電離輻射進入晶體中,原先處於價帶的電子受激發躍遷至導帶,之後經過一段時間(典型值為10-7秒左右),電子又退激回到價帶,在此過程中會釋放出光子,光子能量等於電子前後所處能帶能量之差。一般情況下,禁帶較寬,因此躍遷釋放光子的能量較高,超出可見光範圍。如果在晶體中摻入Tl等雜質(激活劑),則可以在原先的禁帶中產生一些局部能級,這樣電子再受激和退激時就可能會落到這些局部能級,相應的能量差也比原來要小,因此退激放出的光子能量比原先要低,即落在可見光範圍內。
- 有機閃爍體:有機閃爍體大多屬於苯環結構的芳香族化合物,其發光過程中主要通過π電子的躍遷實現。
- 氣體閃爍體:氣體分子受電離輻射激發,退激時釋放光子。氣體閃爍體放出的光子大多屬於紫外光波段,因此需要使用專門針對紫外光的光電元件,或者在工作氣體中摻入少量雜質氣體(如氮氣)通過吸收部分紫外光子來產生可見光光子。