超級感光耦合組件

超級感光耦合組件,即電荷耦合器件(英語:Charge-coupled Device縮寫CCD),是一種積體電路,上有許多排列整齊的電容,能感應光線,並將視頻轉變成數位訊號。經由外部電路的控制,每個小電容能將其所帶的電荷轉給它相鄰的電容。CCD廣泛套用在數字攝影、天文學,尤其是光學遙測技術(photometry)、光學與頻譜望遠鏡,和高速攝影技術如幸運成像

基本介紹

  • 中文名:超級感光耦合組件
  • 外文名:Charge-coupled Device
  • 別稱:電荷耦合器件
簡介,發展史,原理,套用,彩色相機,相互競爭的科技,獲頒2009年諾貝爾物理學獎,參閱,

簡介

超級感光耦合組件,即電荷耦合器件(英語:Charge-coupled Device縮寫CCD),是一種積體電路,上有許多排列整齊的電容,能感應光線,並將視頻轉變成數位訊號。經由外部電路的控制,每個小電容能將其所帶的電荷轉給它相鄰的電容。CCD廣泛套用在數字攝影、天文學,尤其是光學遙測技術(photometry)、光學與頻譜望遠鏡,和高速攝影技術如幸運成像

發展史

CCD是於1969年由美國貝爾實驗室威拉德·博伊爾喬治·史密斯所發明的。當時貝爾實驗室正在發展視頻電話半導體氣泡式存儲器。將這兩種新技術結起來後,博伊爾和史密斯得出一種設備,他們命名為“電荷‘氣泡’組件”(Charge "Bubble" Devices)。這種設備的特性就是它能沿著一片半導體的表面傳遞電荷,便嘗試用來做為記憶設備,當時只能從暫存器用“注入”電荷的方式輸入記憶。但隨即發現光電效應能使此種組件表面產生電荷,而組成數字視頻。
1971年,貝爾實驗室的研究員已能用簡單的線性設備捕捉視頻,CCD就此誕生。有幾家公司接續此一發明,著手進行進一步的研究,包括飛兆半導體、美國無線電公司德州儀器。其中飛兆半導體的產品率先上市,於1974年發表500單元的線性設備和100x100像素的平面設備。
2006年元月,博伊爾和史密斯獲頒電機電子工程師學會頒發的Charles Stark Draper獎章,以表彰他們對CCD發展的貢獻。2009年10月兩人榮獲諾貝爾物理獎。

原理

在一個用於感光的CCD中,有一個光敏區域(矽的外延層),和一個由移位暫存器製成的感測區域(狹義上的CCD)。
圖像通過透鏡投影在一列電容上(光敏區域),導致每一個電容都積累一定的電荷,而電荷的數量則正比於該處的入射光強。用於線掃描相機的一維電容陣列,每次可以掃描一單層的電容;而用於攝像機和一般相機的二維電容陣列,則可以掃描投射在焦平面上的圖像。一旦電容陣列曝光,一個控制迴路將會使每個電容把自己的電荷傳給相鄰的下一個電容(感測區域)。而陣列中最後一個電容里的電荷,則將傳給一個電荷放大器,並被轉化為電壓信號。通過重複這個過程,控制迴路可以把整個陣列中的電荷轉化為一系列的電壓信號。在數字電路中,會將這些信號採樣、數位化,通常會存儲起來;而在模擬電路中,會將它們處理成一個連續的模擬信號(例如把電荷放大器的輸出信號輸給一個低通濾波器)。

套用

含格狀排列像素的CCD套用於數位相機光學掃瞄器攝影機的感光組件。其光效率可達70%(能捕捉到70%的入射光),優於傳統軟片的2%,因此CCD迅速獲得天文學家的大量採用。
視頻經透鏡成像於電容陣列表面後,依其亮度的強弱在每個電容單位上形成強弱不等的電荷。傳真機或掃瞄器用的線性CCD每次捕捉一細長條的光影,而數位相機或攝影機所用的平面式CCD則一次捕捉一整張視頻,或從中截取一塊方形的區域。一旦完成曝光的動作,控制電路會使電容單元上的電荷傳到相鄰的下一個單元,到達邊緣最後一個單元時,電信號傳入放大器,轉變成電位。如此周而復始,直到整個視頻都轉成電位,取樣並數位化之後存入存儲器。存儲的視頻可以傳送到印表機存儲設備顯示器。經冷凍的CCD同時在1990年代初亦廣泛套用於天文攝影與各種夜視設備,而各大型天文台亦不斷研發高像數CCD以拍攝極高解像之天體照片。
CCD在天文學方面有一種奇妙的套用方式,能使固定式的望遠鏡發揮有如帶追蹤望遠鏡的功能。方法是讓CCD上電荷讀取和移動的方向與天體運行方向一致,速度也同步,以CCD導星不僅能使望遠鏡有效糾正追蹤誤差,還能使望遠鏡記錄到比原來更大的視場。
一般的CCD大多能感應紅外線,所以派生出紅外線視頻、夜視設備、零照度(或趨近零照度)攝影機/照相機等。因室溫下的物體會有紅外線的黑體輻射效應,為了減低紅外線干擾,天文用CCD常以液態氮或半導體冷卻。CCD對紅外線的敏感度造成另一種效應,各種配備CCD的數位相機或錄影機若沒加裝紅外線濾鏡,很容易拍到遙控器發出的紅外線。降低溫度可減少電容陣列上的暗電流,增進CCD在低照度的敏感度,甚至對紫外線和可見光的敏感度也隨之提升(信噪比提高)。
溫度噪聲暗電流(dark current)和宇宙輻射都會影響CCD表面的像素。天文學家利用快門的開闔,讓CCD多次曝光,取其平均值以緩解干擾效應。為去除背景噪聲,要先在快門關閉時取視頻信號的平均值,即為“暗框”(dark frame)。然後打開快門,獲取視頻後減去暗框的值,再濾除系統噪聲(暗點和亮點等等),得到更清晰的細節。
天文攝影所用的冷卻CCD照相機必須以接環固定在成像位置,防止外來光線或震動影響;同時亦因為大多數視頻平台生來笨重,要拍攝星系星雲等暗弱天體的視頻,天文學家利用“自動導星”技術。大多數的自動導星系統使用額外的不同軸CCD監測任何視頻的偏移,然而也有一些系統將主鏡接駁在拍攝用之CCD相機上。以光學設備把主鏡內部分星光加進相機內另一顆CCD導星設備,能迅速偵測追蹤天體時的微小誤差,並自動調整驅動馬達以矯正誤差而不需另外設備導星。

彩色相機

一般的彩色數位相機是將拜爾濾鏡加裝在CCD上。每四個像素形成一個單元,一個負責過濾紅色、一個過濾藍色,兩個過濾綠色(因為人眼對綠色比較敏感)。結果每個像素都接收到感光信號,但色彩解析度不如感光解析度。
用三片CCD和分光稜鏡組成的3CCD系統能將顏色分得更好,分光稜鏡能把入射光分析成紅、藍、綠三種色光,由三片CCD各自負責其中一種色光的呈像。所有的專業級數字攝影機,和一部分的半專業級數字攝影機採用3CCD技術。
截至2005年,超高解析度的CCD晶片仍相當昂貴,配備3CCD的高解析靜態照相機,其價位往往超出許多專業攝影者的預算。因此有些高檔相機使用旋轉式色彩濾鏡,兼顧高解析度與忠實的色彩呈現。這類多次成像的照像機只能用於拍攝靜態物品。

相互競爭的科技

近年來,利用互補金屬氧化物半導體的製程,已能製造實用的主動像素感測器(Active Pixel Sensor)。CMOS是所有矽晶片製作的主流技術,CMOS感光組件不但造價低廉,也能將信號處理電路集成在同一部設備上。CCD則有助於濾除背景噪聲,因為CMOS比CCD更容易受噪聲干擾。這部分的困擾現已漸漸解決,這要歸功於使用個別像素的低級放大器取代用於整片CCD陣列的單一高階放大器。CMOS感光組件跟CCD相比,耗電量較低,數據傳輸亦較快。於高解析度數字攝影機與數位相機,尤其是片幅規格較大的數字單眼相機更常見到CMOS的套用,另外消費型數位相機以及附有照相功能的手機亦開始使用背面照射式CMOS,使成像質量得以提升。CMOS於成像的技術日趨成熟下大幅普及,使CCD的占有率從2010年代起不斷下降,全球最大的CCD生產商索尼更宣布於2017年停止生產CCD,但是高級照片掃瞄器以及軍方器材仍然為CCD所壟斷。

獲頒2009年諾貝爾物理學獎

CCD的發明,令威拉德·博伊爾喬治·史密斯與發明光纖高錕分享2009年諾貝爾獎。諾貝爾獎評審委員會宣稱,三人的發明有助於創建今日網路世界的基礎,為今日的日常生活創立許多革新,也為科學的開拓上提供了工具。

參閱

攝錄機

相關詞條

熱門詞條

聯絡我們