貝納德對流

貝納德對流

貝納德對流,又稱瑞利-貝納德對流,是在從下方加熱的流體的平面水平層中發生的一種自然對流。在該層中,流體形成一種稱為貝納德原胞的規則對流原胞。這種對流模式是最常被研究的對流現象之一,同時也是一種自組織非線性系統。

基本介紹

  • 中文名:貝納德對流
  • 外文名:Bénard convection
    Rayleigh–Bénard convection
  • 適用領域:熱力學、非線性系統
  • 所屬學科物理學
  • 別名:瑞利-貝納德對流
  • 發現者:貝納德(Benard,C.)
  • 發現時間:1900年
定義,性質,實驗觀察,

定義

當由底部加熱水平金屬板上的流體薄層時,開始只有微觀的熱傳導而巨觀上保持靜止.但當溫度梯度超過某臨界值時,流體會突然出現巨觀可見的對流圖案結構.當上表面為自由時,從上向下可見其形狀為六角形格子;而上表面亦有平板約束時,從側面觀察則可見對流呈兩兩相背方向的旋轉捲筒狀. 這種現象稱為貝納德對流.

性質

失穩條件
貝納德對流的失穩條件為瑞利數
達到某臨界值,其中g為重力加速度,β為流體體積膨脹係數,α為熱導率,v為運動粘性係數,L為流體層厚度,Tb-Tu為流體上下面溫差值.
隨著瑞利數的增加,引力起主要作用。當臨界瑞利數為1708時,不穩定集起作用,對流原胞出現。
貝納德對流是非平衡系統自組織或耗散結構現象的早期例子(參見 “耗散結構理論”).
熱傳導特徵
在瑞利-貝納德對流中,對流原胞的旋轉是穩定的,順時針和逆時針的方向交替出現:這是自發對稱破缺的一個實例。貝納德原胞處於亞穩態,較小的擾動不會改變原胞的旋轉,而較大的則會有影響。這也是某種形式的遲滯現象的表現。
另外在模擬的過程中也發現,微觀層面上具有決定性的定律,在巨觀層面上卻造成了非決定性的結果。對初態進行微觀層面上的擾動足以產生非決定性的巨觀效應。某個微觀擾動在巨觀上產生的效應是無法計算的,這也是複雜系統(complex system)的特徵之一(即蝴蝶效應)。如果進一步提升液體底部的溫度,之前形成的湍流會變得混沌起來。
對流的貝納德原胞趨向於形成規則的正六角稜柱,特別是在沒有過分擾動的情況下;在某些實驗條件下,原胞也會出現正四稜柱或螺旋狀。
貝納德原胞常出現於由表面張力驅動的對流中。一般來說,瑞利和皮爾森的分析(線性理論)的解導致了簡併的出現。若考慮實際的系統,對流圖案則取決於系統邊界的形狀。

實驗觀察

瑞利-貝納德對流的特徵可以通過法國物理學家亨利·貝納德在1900年完成的一個簡單實驗來觀察。
實驗利用了夾在兩層平行板之間的一層液體(例如)。首先,令上下兩板的溫度一致;夾在兩板之間的液體會趨向熱力學平衡;此平衡也是漸進穩定的。接著,稍稍升高底部的溫度將導致熱量通過液體向上傳導;系統開始出現熱傳導的結構,線性的溫度梯度被建立起來。此時,微觀的無序運動會自發地在巨觀尺度上變得有序,形成具有一定特徵相關長度的貝納德原胞。

相關詞條

熱門詞條

聯絡我們