計算機體系結構:量化研究方法(2019年機械工業出版社出版的圖書)

計算機體系結構:量化研究方法(2019年機械工業出版社出版的圖書)

本詞條是多義詞,共2個義項
更多義項 ▼ 收起列表 ▲

《計算機體系結構:量化研究方法》是2019年機械工業出版社出版的圖書,作者是約翰·L.亨尼斯。

基本介紹

  • 中文名:計算機體系結構:量化研究方法
  • 作者:約翰·L.亨尼斯
  • 出版社:機械工業出版社
  • 出版時間:2019年7月1日
  • 頁數:617 頁
  • 開本:16 開
  • 裝幀:平裝
  • ISBN:9787111631101
內容簡介,圖書目錄,作者簡介,

內容簡介

文藝復興以來,源遠流長的科學精神和逐步形成的學術規範,使西方國家在自然科學的各個領域取得了壟斷性的優勢;也正是這樣的優勢,使美國在信息技術發展的六十多年間名家輩出、獨領風騷。在商業化的進程中,美國的產業界與教育界越來越緊密地結合,計算機學科中的許多泰山北斗同時身處科研和教學的前線,由此而產生的經典科學著作,不僅擘劃了研究的範疇,還揭示了學術的源變,既遵循學術規範,又自有學者個性,其價值並不會因年月的流逝而減退。
  近年,在全球信息化大潮的推動下,我國的計算機產業發展迅猛,對專業人才的需求日益迫切。這對計算機教育界和出版界都既是機遇,也是挑戰;而專業教材的建設在教育戰略上顯得舉足輕重。在我國信息技術發展時間較短的現狀下,美國等已開發國家在其計算機科學發展的幾十年間積澱和發展的經典教材仍有許多值得借鑑之處。因此,引進一批國外優秀計算機教材將對我國計算機教育事業的發展起到積極的推動作用,也是與世界接軌、建設真正的世界一流大學的必由之路。
  “計算機科學叢書”的出版工作得到了國內外學者的鼎力相助,國內的專家不僅提供了中肯的選題指導,還不辭勞苦地擔任了翻譯和審校的工作;而原書的作者也相當關注其作品在中國的傳播,有的還專門為其書的中譯本作序。迄今,“計算機科學叢書”已經出版了近500個品種,這些書籍在讀者中樹立了良好的口碑,並被許多高校採用為正式教材和參考書籍。其影印版“經典原版書庫”作為姊妹篇也被越來越多實施雙語教學的學校所採用。

圖書目錄

Chapter 1 Fundamentals of Quantitative Design and Analysis
1.1 Introduction 2
1.2 Classes of Computers 6
1.3 Defining Computer Architecture 11
1.4 Trends in Technology 18
1.5 Trends in Power and Energy in Integrated Circuits 23
1.6 Trends in Cost 29
1.7 Dependability 36
1.8 Measuring, Reporting, and Summarizing Performance 39
1.9 Quantitative Principles of Computer Design 48
1.10 Putting It All Together: Performance, Price, and Power 55
1.11 Fallacies and Pitfalls 58
1.12 Concluding Remarks 64
1.13 Historical Perspectives and References 67
Case Studies and Exercises by Diana Franklin 67
Chapter 2 Memory Hierarchy Design
2.1 Introduction 78
2.2 Memory Technology and Optimizations 84
2.3 Ten Advanced Optimizations of Cache Performance 94
2.4 Virtual Memory and Virtual Machines 118
2.5 Cross-Cutting Issues: The Design of Memory Hierarchies 126
2.6 Putting It All Together: Memory Hierarchies in the ARM Cortex-A53 and Intel Core i7 6700 129
2.7 Fallacies and Pitfalls 142
2.8 Concluding Remarks: Looking Ahead 146
2.9 Historical Perspectives and References 148
Case Studies and Exercises by Norman P. Jouppi, Rajeev
Balasubramonian, Naveen Muralimanohar, and Sheng Li
Chapter 3 Instruction-Level Parallelism and Its Exploitation
3.1 Instruction-Level Parallelism: Concepts and Challenges 168
3.2 Basic Compiler Techniques for Exposing ILP 176
3.3 Reducing Branch Costs With Advanced Branch Prediction 182
3.4 Overcoming Data Hazards With Dynamic Scheduling 191
3.5 Dynamic Scheduling: Examples and the Algorithm 201
3.6 Hardware-Based Speculation 208
3.7 Exploiting ILP Using Multiple Issue and Static Scheduling 218
3.8 Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and Speculation 222
3.9 Advanced Techniques for Instruction Delivery and Speculation 228
3.10 Cross-Cutting Issues 240
3.11 Multithreading: Exploiting Thread-Level Parallelism to Improve Uniprocessor Throughput 242
3.12 Putting It All Together: The Intel Core i7 6700 and ARM Cortex-A53 247
3.13 Fallacies and Pitfalls 258
3.14 Concluding Remarks: What’s Ahead? 264
3.15 Historical Perspective and References 266
Case Studies and Exercises by Jason D. Bakos and Robert P. Colwell 266
Chapter 4 Data-Level Parallelism in Vector, SIMD, and GPU Architectures
4.1 Introduction 282
4.2 Vector Architecture 283
4.3 SIMD Instruction Set Extensions for Multimedia 304
4.4 Graphics Processing Units 310
4.5 Detecting and Enhancing Loop-Level Parallelism 336
4.6 Cross-Cutting Issues 345
4.7 Putting It All Together: Embedded Versus Server GPUs and Tesla Versus Core i7 346
4.8 Fallacies and Pitfalls 353
4.9 Concluding Remarks 357
4.10 Historical Perspective and References 357
Case Study and Exercises by Jason D. Bakos 357
Chapter 5 Thread-Level Parallelism
5.1 Introduction 368
5.2 Centralized Shared-Memory Architectures 377
5.3 Performance of Symmetric Shared-Memory Multiprocessors 393
5.4 Distributed Shared-Memory and Directory-Based Coherence 404
5.5 Synchronization: The Basics 412
5.6 Models of Memory Consistency: An Introduction 417
5.7 Cross-Cutting Issues 422
5.8 Putting It All Together: Multicore Processors and Their Performance 426
5.9 Fallacies and Pitfalls 438
5.10 The Future of Multicore Scaling 442
5.11 Concluding Remarks 444
5.12 Historical Perspectives and References 445
Case Studies and Exercises by Amr Zaky and David A. Wood 446
Chapter 6 Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism
6.1 Introduction 466
6.2 Programming Models and Workloads for Warehouse-Scale Computers 471
6.3 Computer Architecture of Warehouse-Scale Computers 477
6.4 The Efficiency and Cost of Warehouse-Scale Computers 482
6.5 Cloud Computing: The Return of Utility Computing 490
6.6 Cross-Cutting Issues 501
6.7 Putting It All Together: A Google Warehouse-Scale Computer 503
6.8 Fallacies and Pitfalls 514
6.9 Concluding Remarks 518
6.10 Historical Perspectives and References 519
Case Studies and Exercises by Par

作者簡介

  約翰·L.亨尼斯(John L.Hennessy),Hennessy與Patterson共同榮獲了2017年度“圖靈獎”,以表彰他們在計算機體系結構領域的開創性貢獻。Hennessy現為Google母公司Alphabet的董事長,之前曾任史丹福大學第十任校長。他是IEEE和ACM會士,美國國家工程院、國家科學院、美國哲學院以及美國藝術與科學院院士。他於1981年開始研究MIPS項目,之後創辦MIPS Computer Systems公司,開發了商用RISC微處理器之一。他還領導了DASH項目,設計了一個可擴展cache-致性多處理器原型。
  
  戴維·A.帕特森(David A.Patterson),Patterson與Hennessy共同榮獲了2017年度“圖靈獎”。Patterson現為Google傑出工程師,之前為加州大學伯克利分校教授。他曾任ACM主席一職,目前是ACM和IEEE會士,美國藝術與科學院和計算機歷史博物館院士,併入選了美國國家工程院、國家科學院和矽谷工程名人堂。他領導了RISC I的設計與實現工作,並且是RAID項目的領導者。

相關詞條

熱門詞條

聯絡我們