基本介紹
- 中文名:航天運輸工具
- 地址:佛羅里達州卡納維拉爾角空軍站
- 用途:運輸工具把衛星送到預定軌道等
- 技術指標:運載能力和入軌精度
設備介紹,發展,分類,結構組成,箭體結構,動力裝置,控制系統,遙測系統,外彈道測量,安全系統,瞄準系統,指標,運載能力,飛行程式,設計特點,國外典型設備,大力神系列,宇宙神系列,德爾它系列,土星-V系列,東方號系列,質子號系列,天頂號系列,能源號,阿里安系列,H系列,極軌衛星火箭,我國發展,長征一號系列,長征二號系列,長征三號系列,長征四號系列,
設備介紹
位於佛羅里達州卡納維拉爾角空軍站的東部靶場和位於加利福尼亞州范登堡空軍基地的西部靶場是美國主要的太空飛行器發射基地。美軍使用太空梭、“飛馬”、“金牛座”、“德爾塔”、“阿特拉斯”、“大力神”發射器以及“慣性”上一級和“半人馬”上一級推進器將有效載荷送入軌道。
運載火箭一般由2~4級火箭組成,各級火箭通過級間結構連線。作為有效載荷的太空飛行器放在最前端,外面大多套有整流罩以保護在大氣層內飛行時的安全。運載火箭總重量可達數百噸,高達數十米,火箭發動機的推力達幾百噸以至數千噸、運載火箭每一級都有自己的箭體結構和動力裝置,控制系統則常為共用的。早期的運載火箭大多由彈道飛彈改進而成,後來為適應不同航天發射任務的需要,專門研製了系列化的運載火箭。運載火箭大多使用液體推進劑,第一、二級多用液氧和煤油等常規型推進劑,末級常用液氧和液氫高能推進劑。
運載火箭的主要技術指標是運載能力和入軌精度。運載能力措運載器可送入預定軌道的有效載荷的質量,它隨預定軌道的高度和傾角的增大而減小。美國運載能力最大的運載火箭可將120噸的有效載荷送入低軌道。運載火箭的入軌精度主要取
決於控制系統的水平。
衛星接軌道分有三類,即靜止軌道衛星(軌道高度大的36萬千米)、大橢圓軌道衛星(遠地點高度大約在2萬千米)和低軌道衛星(軌道高度在300千米~:3000千米八地球靜止軌道衛星的主要優點是軌道高,一顆衛星即可覆蓋地球表面30%,24小時均可以利用,全球覆蓋只需3顆衛星。大橢同軌道衛星系統的最大優點是可根據覆蓋的需要來設計衛星的遠地點,可解決極區覆蓋問題,但不能克服高軌道的弱點。低軌道衛星有節省功率、攜帶推進劑少和便於發射的優點。太空飛行器發射器的發射方式有垂直發射和水平發射兩種。垂直發射要求助推級發動機有大於起飛重量的推力,以便迅速飛出大氣層;水平發射時,發動機推力可較小,但持續工作時間匕
運載火箭需專門的發射場發射。火箭從地面垂直起飛,十幾秒鐘後開始程式拐彎,第一級火箭工作完畢後脫落,第二級接替工作,如此直至本級火箭工作完畢,火箭進入預定軌道,調整姿態,本級火箭與太空飛行器脫離.完成其使命。運載火箭進入預定軌道的部分稱為軌道器,能在太空短期運行。運載火箭的軌道器是一次性使用的,軌道器分為帶主發動機和不帶主發動機兩種。前者具有在助推器脫落後繼續加速、上升的功能,後者完全靠助推器送入預定軌道。運載火箭軌道器具有~船太空飛行器所具有的功能系統;具有改變運行軌道和調整姿態的能力。
美國的運載火箭發射器有“宇宙神”、“德爾塔”、“飛馬座/金牛座”、“偵察兵”、“大力神”等系列,現已停止使用的系列有“五比特”、“土星”、“雷神”和“先鋒號”等。“宇宙神”運載火箭是從獲得成功的“宇宙神佝際彈道飛彈演變而來的。它在許多重要計畫中都有套用,其中為空軍發射數量占其總發射數的75%以上、其第一項任務是1958年發射世界L第一個通信衛星“斯科爾”計畫。當時使用的是“宇宙神”LV一3A型運載火箭。1962年2月20日,“水量”計畫載人發射’‘宇宙神”I。V一3B型運載火箭發射成功。
1961年,來自國防部和宇航局的代表對美國航天運載火箭的需求進行深入調查,結論是用當時已有的或正在研製的任何一個系統,都難以滿足任務要求。需要用靈活的標準化系統代替各種不同的運載火箭。這樣可達到高一個級別的費用/效益比,並能提高系統的可靠性。1962年。空軍與通用動力公司簽定了標準運載火箭(SIJV)的契約。從“宇宙神”SI。V一3型開始的“宇宙神”運載火箭是標準運載火箭系列。“宇宙神’它I。V-3共發射sl次,成功49次,其中5次“月球軌道器”發射全部成功。“宇宙神”SI-V—3D還多次用於發射艦隊通信衛星。
1967年後,通用動力公司將洲際飛彈改裝成“宇宙神”E、“宇宙神”F運載火箭,先後多次發射海軍海洋監視衛星、導航星全球定位系統、“諾阿”氣象衛星、國防氣象衛星等多種衛星。“挑戰者“號太空梭失事後,美國決定太空梭不再承擔衛星發射任務,並確定要更多地使用一次性運載火箭,故1988年5月空軍選擇“宇宙神”且運載火箭發射國防衛星通信系統(DSCS)以及超高頻後繼型軍用通信衛星。“宇宙神”見滿足了國防部對具有中等發射能力運載火箭的需求,其長 47 5米,重187 6噸。能把太空飛行器送到低地球軌道、地球同步轉移軌道或地球同步軌道上,可把2770千克的有效載荷送入地球同步轉移軌道。
最早用於發射太空飛行器的“大力神”系列是“大力神”1雙子星座運載火箭,它進行廣載入發射。而後又研製生產廠大力神”皿的A、1王、C、I)、E型。“大力神”血主要用戶是宇航局和商用,但也有軍方套用,其中“大力神”皿A、“大力神”mC、“大力神m”l),發射了用於通信的“林肯”試驗衛星、“大鳥”照相偵察衛星、戰術通信衛星、國防衛星通信系統衛星和用於核爆炸探測的“維拉’計程等。
1984年,國防部要求發展~種發射系統,旨在彌補太空梭之不足和確保某些美國的秘密有效載荷進入空間,從而開始了研製“大力神”w的計畫。“大力神”N於1989年6月14日首次成功發射,並成為國防部發射許多重型衛星的主要運載火箭。“大力神”W長62.2米,總重量860噸,可運送太空飛行器到極軌道、低地球軌道或地球同步軌道,最大有效載荷低地球軌道周 64噸、地球同步軌道 5 76噸。先後發射了用於照相偵察的“鎖眼”衛星 KH— 11、用於雷達成像偵察的“長曲棍球”衛星、飛彈預警衛星“國防支援計畫”、通信衛星“軍事星”等軍用衛星。
由於美國國防經費削減,1995年美國對重複使用運載火箭加緊論證,並以單級入軌火箭動力運載火箭為重點開展了大量的研製工作。目前已進行了多次試驗。美國軍方認為,未來航天任務要求一種便捷、可靠、經濟和可承受的通向太空的手段,而重複使用運載火箭是最有希望滿足這種要求的手段。
k-1運載火箭
"德爾它"-Ⅳ運載火箭
"宇宙神"-Ⅲ運載火箭
"宇宙神"-Ⅲ運載火箭
德爾它2運載火箭
"德爾它"-Ⅲ中型商業運載火箭
"比爾"-2(beal ba-2)運載火箭
一、俄羅斯“聯盟”載人飛船和“進步”貨運飛船
俄羅斯擁有“聯盟”系列載人飛船和“進步”系列貨運飛船。這些飛船雖不能重複發射,但簡單、實用、生產周期短,是經久耐用、性能良好的運輸工具。
“聯盟”系列飛船至今已使用40餘年,它可容納3名太空人,也可被改造為貨運飛船。“進步”貨運飛船一次可運送2噸左右的貨物。2003年美國“哥倫比亞”號太空梭失事後,美國連續幾年未發射太空梭,“進步”系列飛船在此期間成為國際空間站唯一的貨物運輸工具。
二、美國太空梭
美國的太空梭本身像一架大型噴氣式客機,它的駕駛員艙可以乘坐3名到7名太空人,貨艙則可以裝載約30噸的大型太空望遠鏡等貨物。
太空梭雖然可以多次往返於天地之間,但具有較高的維護和發射成本,在發射和返回時也面臨許多風險,包括美國在內的一些國家正在考慮研發更新型的太空運輸工具。
三、歐洲ATV自動貨運飛船
歐洲航天局製造的ATV自動貨運飛船運貨能力接近8噸,大於俄羅斯的“進步”貨運飛船。ATV飛船除了向國際空間站運送貨物外,還可用作太空拖船,在必要時幫助國際空間站提升軌道。
ATV飛船的一大特點是具有先進的高精度導航能力,可在較少地面控制的情況下自動與國際空間站對接。
由多級火箭組成的航天運輸工具。用途是把人造地球衛星、載人飛船、空間站、空間探測器等有效載荷送入預定軌道。是在飛彈的基礎上發展的,一般由2~4級組成。每一級都包括箭體結構、推進系統和飛行控制系統。末級有儀器艙,內裝制導與控制系統、遙測系統和發射場安全系統。級與級之間靠級間段連線。有效載荷裝在儀器艙的上面,外面套有整流罩。
許多運載火箭的第一級外圍捆綁有助推火箭,又稱零級火箭。助推火箭可以是固體或液體火箭,其數量根據運載能力的需要來選擇。推進劑大都採用液體雙組元推進劑。第一、二級多用液氧和煤油或四氧化二氮和混肼為推進劑,末級火箭採用高能的液氧和液氫推進劑。制導系統大都用自主式全慣性制導系統。在專門的發射中心 (見太空飛行器發射場) 發射。技術指標包括運載能力、入軌精度、火箭對不同重量的有效載荷的適應能力和可靠性。
發展
運載火箭是第二次世界大戰後在飛彈的基礎上開始發展的。第一枚成功發射衛星的運載火箭是蘇聯用洲際飛彈改裝的衛星號運載火箭(見“人造地球衛星”1號工程)。到 20世紀80年代,蘇聯、美國、法國、日本、中國、英國、印度和歐洲空間局已研製成功20多種大、中、小運載能力的火箭。最小的僅重10.2噸,推力 125千牛(約12.7噸力),只能將1.48公斤重的人造衛星送入近地軌道;最大的重2900多噸,推力 33350千牛(3400噸力),能將120多噸重的載荷送入近地軌道。主要的運載火箭有“大力神”號運載火箭、“德爾塔”號運載火箭、“土星”號運載火箭、“東方”號運載火箭、“宇宙”號運載火箭、“阿里安”號運載火箭、 N號運載火箭、“長征”號運載火箭等。
分類
目前常用的運載火箭按其所用的推進劑來分,可分為固體火箭、液體火箭和固液混合型火箭三種類型。如我國的長征三號運載火箭是一種三級液體火箭;長征一號運載火箭則是一種固液混合型的三級火箭,其第一級、第二級是液體火箭,第三級是固體火箭;美國的“飛馬座”運載火箭則是一種三級固體火箭。
如按級數來分,運載火箭又可分為單級火箭、多級火箭。其中多級火箭按級與級之間的連線型式來分,又可分為串聯型、並聯型(俗稱捆綁式)、串並聯混合型三種類型。串聯型多級火箭級與級之間的連線分離機構簡單,但串聯後火箭總長較長、火箭的長細比(長度與直徑之比)大,給設計帶來一定的困難;發射時,這種火箭豎起來後太高,給發射操作帶來不便;同時,其上面級的火箭發動機要在高空點火,點火的可靠性差。並聯型多級火箭採用橫向捆綁連線,連線分離機構稍複雜,但其中間芯級第一級火箭採用橫向捆綁的火箭可在地面同時點火,避免了高空點火,點火的可靠性高。蘇聯發射世界上第一顆人造地球衛星的衛星號運載火箭,就是在中間芯級火箭的周圍又捆綁了4枚火箭。這4枚捆上去的火箭習慣上又稱助推器。助推器與芯級火箭在地面一起點火,但工作一定時間後先關機,關機後與芯級火箭分離並被拋掉。助推器因在第一級火箭飛行的半路上關機,所以只能算它是半級火箭。發射世界第一顆人造地球衛星的衛星號運載火箭為一級半火箭,而不稱它為兩級火箭。我國的長征二號E運載火箭則是一枚串並聯混合型的兩級半火箭,其第一級火箭周圍捆綁了4枚助推器,在第一級火箭上面又串聯了一枚第二級火箭。
結構組成
不管是固體運載火箭還是液體運載火箭,不管是單級運載火箭還是多級運載火箭,其主要的組成部分有結構系統、動力裝置系統和控制系統。這三大系統稱為運載火箭的主系統,主系統工作的可靠與否,將直接影響運載火箭飛行的成敗。此外,運載火箭上還有一些不直接影響飛行成敗並由箭上設備與地面設備共同組成的系統,例如,遙測系統、外彈道測量系統、安全系統和瞄準系統等。
箭體結構
是運載火箭的基體,它用來維持火箭的外形,承受火箭在地面運輸、發射操作和在飛行中作用在火箭上的各種載荷,安裝連線火箭各系統的所有儀器、設備,把箭上所有系統、組件連線組合成一個整體。
動力裝置
是推動運載火箭飛行並獲得一定速度的裝置。對液體火箭來說,動力裝置系統由推進劑輸送、增壓系統和液體火箭發動機兩大部分組成。固體火箭的動力裝置系統較簡單,它的主要部分就是固體火箭發動機推進劑直接裝在發動機的燃燒室殼體內。
控制系統
是用來控制運載火箭沿預定軌道正常可靠飛行的部分。控制系統由制導和導航系統、姿態控制系統、電源供配電和時序控制系統三大部分組成。制導和導航系統的功用是控制運載火箭按預定的軌道運動,把有效載荷送到預定的空間位置並使之準確進入軌道。姿態控制系統(又稱姿態穩定系統)的功用是糾正運載火箭飛行中的俯仰、偏航、滾動誤差,使之保持正確的飛行姿態。電源供配電和時序控制系統則按預定飛行時序實施供配電控制。
遙測系統
功用是把運載火箭飛行中各系統的工作參數及環境參數測量下來,通過運載火箭上的無線電發射機將這些參數送回地面,由地面接收機接收;亦可將測量所得的參數記錄在運載火箭上的磁記錄器上,在地面回收磁記錄器。這些測量參數既可用來預報太空飛行器入軌時的軌道參數,又可用來鑑定和改進運載火箭的性能。一旦運載火箭在飛行中出現故障,這些參數就是故障分析的依據。
外彈道測量
功用是利用地面的光學和無線電設備與裝在運載火箭上的對應裝置一起對飛行中的運載火箭進行跟蹤,並測量其飛行參數,用來預報太空飛行器入軌時的軌道參數,也可用來作為鑑定製導系統的精度和故障分析依據。
安全系統
功用是當運載火箭在飛行中一旦出現故障不能繼續飛行時,將其在空中炸毀,避免運載火箭墜落時給地面造成災難性的危害。安全系統包括運載火箭上的自毀系統和地面的無線電安全系統兩部分。箭上的自毀系統由測量裝置、計算機和爆炸裝置組成。當運載火箭的飛行姿態,飛行速度超出允許的範圍,計算機發出引爆爆炸裝置的指令,使運載火箭在空中自毀。無線電安全系統則是由地面雷達測量運載火箭的飛行軌道,當運載火箭的飛行超出預先規定的安全範圍時,由地面發出引爆箭上爆炸裝置的指令,由箭上的接收機接收後將火箭在空中炸毀。
瞄準系統
功用是給運載火箭在發射前進行初始方位定向。瞄準系統由地面瞄準設備和運載火箭上的瞄準設備共同組成。
指標
運載火箭的技術指標包括運載能力、入軌精度、火箭對不同重量的有效載荷的適應能力和可靠性。
運載能力
指火箭能送入預定軌道的有效載荷重量。有效載荷的軌道種類較多,所需的能量也不同,因此在標明運載能力時要區別低軌道、太陽同步軌道、地球同步衛星過渡軌道、行星探測器軌道等幾種情況。表示運載能力的另一種方法是給出火箭達到某一特徵速度時的有效載荷重量。各種軌道與特徵速度之間有一定的對應關係。例如把衛星送入 185公里高度圓軌道所需要的特徵速度為7.8公里/秒,1000公里高度圓軌道需8.3公里/秒,地球同步衛星過渡軌道需10.25公里/秒,探測太陽系需12~20公里/秒。
飛行程式
運載火箭在專門的航天發射中心發射。火箭從地面起飛直到進入最終軌道要經過以下幾個飛行階段:
①大氣層內飛行段:火箭從發射台垂直起飛,在離開地面以後的10幾秒鐘內一直保持垂直飛行。在垂直飛行期間,火箭要進行自動方位瞄準,以保證火箭按規定的方位飛行。然後轉入零攻角飛行段。火箭要在大氣層內跨過聲速,為減小空氣動力和減輕結構重量,必須使火箭的攻角接近於零。
②等角速度程式飛行段:第二級火箭的飛行已經在稠密的大氣層以外,整流罩在第二級火箭飛行段後期被拋掉。火箭按照最小能量的飛行程式,即以等角速度作低頭飛行。達到停泊軌道高度和相應的軌道速度時,火箭即進入停泊軌道滑行。對於低軌道的太空飛行器,火箭這時就已完成運送任務,太空飛行器便與火箭分離。
③過渡軌道:對於高軌道或行星際任務,末級火箭在進入停泊軌道以後還要再次工作,使太空飛行器加速到過渡軌道速度或逃逸速度,然後太空飛行器與火箭分離。
設計特點
運載火箭的設計特點是通用性、經濟性和不斷進行小的改進。這和大型飛彈不同。大型飛彈是為滿足軍事需要而研製的,起支配作用的因素是保持技術性能和數量上的優勢。因此飛彈的更新換代較快,幾乎每 5年出一種新型號。運載火箭則要在商業競爭的環境中求發展。作為商品,它必須具有通用性,能適應各種衛星重量和尺寸的要求,能將有效載荷送入多種軌道。經濟性也要好。也就是既要性能好,又要發射耗費少。訂購運載火箭的用戶通常要支付兩筆費用。一筆是付給火箭製造商的發射費,另一筆是付給保險公司的保險費。發射費代表火箭的生產成本和研製費用,保險費則反映火箭的可靠性。火箭製造者一般都儘量採用成熟可靠的技術,並不斷通過小風險的改進來提高火箭的性能。運載火箭不像飛彈那樣要定型和批生產。而是每發射一枚都可能引進一點新技術,作一點小改進,這種小改進不影響可靠性,也不必進行專門的飛行試驗。這些小改進積累起來就有可能導致大的方案性變化,使運載能力能有成倍的增長。
80年代以來,一次使用的運載火箭已經面臨太空梭的競爭。這兩種運載工具各有特長,在今後一段時間內都將獲得發展。太空梭是按照運送重型太空飛行器進入低軌道的要求設計的,運送低軌道太空飛行器比較有利。對於同步軌道太空飛行器,太空梭還要攜帶一枚一次使用的運載器,用以把太空飛行器從低軌道發射出去,使之進入過渡軌道。這樣有可能導致入軌精度和發射可靠性的下降。
一次使用的運載火箭在發射同步軌道衛星時可以一次送入過渡軌道,比太空梭稍為有利。這兩種運載工具之間的競爭將促進可靠性的提高和成本的降低。
國外典型設備
大力神系列
美國大力神運載火箭系列由大力神-2洲際飛彈發展而來,1964年首次發射。該系列由大力神-2、大力神-3、大力神-34、大力神-4和商用大力神-3等型號和子系列組成。它的最大近地軌道運載能力為21.9 t,地球同步轉移軌道運載能力為5.3 t。
宇宙神系列
美國宇宙神系列運載火箭於1958年12月18日首次發射,曾經發射過世界上第一顆通信衛星、美國第一艘載人飛船等。目前正在使用的主要有宇宙神-2A、宇宙神-2AS和宇宙神-3。研製中的宇宙神-5運載火箭的第一級採用了通用模組化設計,其中的重型火箭使用了3個通用模組,其地球同步轉移軌道運載能力達到13 t。
德爾它系列
美國德爾它系列運載火箭系列於1960年5月13日首次發射,迄今為止已發展了19種型號,目前正在使用的是德爾它-2和德爾它-3兩種型號。美國空軍的全部GPS衛星都是由德爾它-2發射的。德爾它-3是在德爾它-2的基礎上研製的大型運載火箭,可以把3.8t的有效載荷送入地球同步轉移軌道。德爾它-3於2000年8月發射成功。美國還正在研製具有多種配置的德爾它-4子系列,其中的重型德爾它-4的地球同步轉移軌道運載能力在13t以上。
土星-V系列
土星-V運載火箭是美國專為阿波羅登月計畫而研製的、迄今為止最大的巨型運載火箭。其起飛重量為3000t,直徑10m,高110m,近地軌道運載能力達139t,它能把重達50t的阿波羅飛船送入登月軌道。土星-V曾先後將12名太空人送上月球。
東方號系列
俄羅斯東方號系列運載火箭是世界上第一種載人航天運載工具,它創造了多個世界第一:發射了第一顆人造衛星,第一顆月球探測器,第一顆金星探測器,第一顆火星探測器,第一艘載人飛船,第一艘無人載貨飛船進步號等。它也是世界上發射次數最多的運載火箭系列。其中聯盟號是東方號的一個子系列,主要發射聯盟號載人飛船、進步號載貨飛船。
質子號系列
俄羅斯質子號系列運載火箭分為二級型、三級型和四級型3種型號。目前正在使用的有質子號三級型和四級型兩種。三級型質子號於1968年11月16日首次發射,其低地軌道運載能力達到20t,它是世界上第一種用於發射空間站的運載火箭,曾發射過禮炮l~7號空間站、和平號空間站各艙段和其他大型低地軌道有效載荷。1998年11月20日,質子號發射了國際空間站的第一個艙段。
天頂號系列
天頂號系列運載火箭是前蘇聯(後為烏克蘭)研製的運載火箭,分為兩級的天頂-2、三級的天頂-3和用於海上發射的天頂-3SL。天頂-2的低地軌道運載能力約為14t,太陽同步軌道運載能力約為11t。可在海上發射的天頂-3SL是美國、烏克蘭、俄羅斯、挪威聯合研製的運載火箭,其地球同步軌道運載能力為2t,1999年3月首次發射成功。
能源號
能源號運載火箭是前蘇聯/俄羅斯研製的目前世界上起飛質量和推力最大的火箭。其近地軌道運載能力為105 t,既可發射大型無人載荷,也可用於發射載人太空梭。能源號於1987年首次發射成功,曾將蘇聯的暴風雪號太空梭成功地送上天。目前由於俄羅斯經濟狀態不佳就再也沒有發射過。
阿里安系列
阿里安火箭是由歐洲11個國家組成的歐空局研製的系列運載火箭,該系列已有阿里安l~5共5個子系列,目前正在使用的是阿里安-4和阿里安-5。阿里安-4於1988年6月15日進行了首次發射,其近地軌道運載能力為9.4t,地球同步轉移軌道運載能力為4.2t。阿里安-5於1997年進行了首次發射,近地軌道運載能力為22t,地球同步轉移軌道運載能力為6.7t。目前阿里安-5正在進行改進,在2005年底之前將逐步把地球同步轉移軌道運載能力從目前的6.7 t提高到11~12t。
H系列
日本H系列運載火箭由H-1、H-2、H-2A等火箭組成,目前正在使用的H系列火箭只有H-2A,2001年8月首次發射成功。
極軌衛星火箭
印度自行研製的極軌道4級運載火箭的太陽同步軌道運載能力為1t,低地軌道運載能力為3t。1993年9月首次發射,但由於火箭出現故障,衛星未能入軌。此後,該火箭連續三次發射成功。1999年5月,一箭三星技術又取得成功。
我國發展
到目前為止我國共研製了12種不同類型的長征系列火箭,能發射近地軌道、地球靜止軌道和太陽同步軌道的衛星。
從1970年到2000年的30年間,我國發射長征系列火箭總計67次,成功61次,6次失敗或部分失敗,發射成功率為91%。在1994~1996年間曾一度幾次發射失敗,使我國在國際商業發射市場的聲譽處於低谷。中國航天工業總公司經過一系列質量整頓後終於打了個翻身仗。自1996年10月到目前已連續25次發射成功,這在世界衛星發射界也是不多見的。
在我國運載火箭的發展初期,探空火箭的研製占有重要的地位,儘管它是結構簡單的無控火箭,但卻是新中國成立後的第一枚真正的火箭。從1958年開始,我國陸續研製出包括生物、氣象、地球物理、空間科學試驗等多種類型的探空火箭。
長征一號系列
1970年4月24日,中國使用長征一號(LM-1)運載火箭發射了第一顆人造衛星東方紅一號。長征一號是在兩級中遠程飛彈上再加一個第三級固體火箭所組成,火箭全長29.86m,起飛總重81.57t,起飛推力為1040kN。
長征二號系列
長征二號(LM-2)運載火箭是從洲際飛彈的基礎上發展而來的,並於1975年發射了1t多重的近地軌道返回式衛星,成功地回收了返回艙。此後,又根據發射衛星的需要,陸續衍生出長征二號丙(LM-2C)、長征二號丙改進型(LM-2C/SD)和發射極軌衛星的長征二號丁(LM-2D)運載火箭。在長征火箭大家族中,長征二號系列主要用於發射各類近地軌道衛星,LM-2C/SD曾以一箭三星方式發射了12顆美國的銥星移動通信衛星。
1986年初美國的挑戰者號太空梭爆炸後,太空梭被停飛,美國用了很長時間分析和處理故障,其後美國停止用太空梭發射一般商業衛星。趁此時機,我國僅用了18個月就研製成功長征二號E(又稱長二捆,LM-E)運載火箭,可以發射原來準備用美國太空梭發射的商用衛星。長征二號E火箭是以長征二號為芯級,周圍捆綁了4個液體助推器,它的近地軌道運載能力高達9.2t。長征二號E於1990年試射成功,從1992年到1995年曾發射多顆外國衛星。
為滿足發射神舟號飛船的要求,保證太空人的安全,我國又在長征二號E的基礎上改進了可靠性並增設了故障檢測系統和逃逸救生系統,從而發展出了長征二號F(LM-F)運載火箭,專門用來發射神舟號載人飛船。
由於長征二號火箭的質量和可靠性非常高,1975~1996年連續成功地把17顆返回式衛星送上天,這使長征二號運載火箭在國際衛星發射市場上獲得了非常好的可靠性聲譽。
長征三號系列
長征三號運載火箭是在長征二號二級火箭上面加了一個以液氫、液氧為推進劑的第三級,所用的液氫液氧發動機可以二次啟動,在技術上是當時國際先進水平,是我國火箭技術發展的一個重要里程碑。1984年長征三號成功地發射了我國第一顆地球同步試驗通信廣播衛星東方紅二號。1985年中國宣布進入國際商業衛星發射市場。1990年我國首次用長征三號運載火箭將美國休斯公司製造的亞洲一號衛星送入地球同步軌道。
此後,長征三號系列不斷增加新成員,如長征三號甲(LM-3A)、長征三號乙(LM-3B),主要用於發射地球靜止軌道衛星。
長征三號甲運載火箭(圖25)是在長征三號的基礎上研製的大型火箭,它的氫氧發動機具有更大的推力,性能也得到很大的提高,地球同步轉移軌道運載能力也從長征三號的1.6t提高到2.6t。
長征三號乙運載火箭(圖26)是在長征三號甲和長二捆的基礎上研製的,即以長征三號甲為芯級,再捆綁4個與長二捆類似的液體助推器。長征三號乙主要用於發射地球同步軌道的大型衛星,也可進行輕型衛星的一箭多星發射,其地球同步轉移軌道運載能力達到5.1t,躍入了世界大型火箭行列。
長征四號系列
目前投入使用的是長征四號乙運載火箭和長征四號丙運載火箭是長征火箭家族中用於發射各種太陽同步軌道和極軌道套用衛星的主要運載工具。