基本介紹
- 中文名:綦建剛
- 出生日期:1964年
- 職業:博士,教授
- 畢業院校:山東師範大學
簡介,研究方向,教育經歷,開課情況,發表文章,
簡介
綦建剛, 1964年出生,理學博士,教授。現為山東大學(威海)數學與統計學院常務副院長,教授,博士生導師,美國數學學會評論員。1999年考入山東大學攻讀博士,從師於陳紹著教授,於2002年獲理學博士學位。1988年在山東師範大學獲得基礎數學碩士學位。1988年至2002年在山東師範大學數學系參加工作,2002年調入寧波大學數學系,曾任寧波大學數學系系主任套用數學研究所副所長。2008年調入山東大學(威海)數學與統計學院。
研究方向
微分方程、邊值問題、微分運算元及其譜理論的研究
教育經歷
1981.07-1985.07山師大數學本科;
1985.09-1988.07山師大基礎數學碩士;
1999.09-2002.06山東大學基礎數學博士
開課情況
研究生:偏微分方程;邊值問題;Hilbert空間線性運算元及擾動理論;微分運算元譜理論。
發表文章
1.Eigenvalue problems of the model from nonlocal continuum mechanics, J. Math. Phys. 52, 073516 (2011); (SCI)
2. Essential spectra of singular matrix differential operators of mixed order in the limit circle case. Math. Nachr. 284(2011), No. 2–3, 342-354. (SCI)
3. Limit point, strong limit point and Dirichlet conditions for Hamiltonian differential systems, Math. Nachr. 284 (2011), No. 5–6,764 -780 (SCI)
4. On an open problem of Weidmann: essential spectra and square-integrable solutions, Proc. Royal Soc. Edinburgh, 141A, 1–14( 2011). (SCI)
5. Essential spectra of singular matrix differential operators of mixed order, J. Diff. Equa. 250 (2011) 4219–4235. (SCI)
6. Classification of Sturm-Liouville differential equations with complex coefficients and operator Realizations, Proc. R. Soc. A (2011) 467, 1835-1850(SCI)
7. Eigenvalues below the Lower Bound of Minimal Operators of Singular Hamiltonian Expressions Comput. Math. Appl., 56(2008), 2825-2833. (SCI)
8. Limit point criteria for semi-degenerate singular Hamiltonian differential systemswith perturbation terms J. Math. Anal. Appl., 334(2007), 983-997(SCI)
9. Boundedness of solutions for singular Hamiltonian differential systems with applications to deficiency indices Nonlinear Analysis, 66(2007), 663-678. (SCI)
10. The symmetry of singular Hamiltonian differential operators and properties of deficiency indices Acta Math. Sinica(English Ser.),22(1)( 2006). (SCI)
11. Limit-point criterion for singular linear Dirac differential systems Comput. Math. Appl., 49(2005),765-775(SCI)
12. Non-limit-Circle Criteria for Singular Hamiltonian Systems J. Math. Anal. Appl. 305(2005),599-616 . (SCI)
13. Lower bound for the spectrum and the presence of pure point spectrum of a singular discrete Hamiltonian system J. Math. Anal. Appl., 295(2004), 539-556(SCI)
14. Strong limit-point (n) classifications for singular Hamiltonian expressions with complex coefficients Proc. Amer. Math. Soc. 132 (2004), 1667-1674(SCI)