約瑟夫問題

約瑟夫問題

約瑟夫問題(有時也稱為約瑟夫斯置換,是一個出現在計算機科學和數學中的問題。在計算機編程的算法中,類似問題又稱為約瑟夫環。又稱“丟手絹問題”.)

基本介紹

  • 中文名:約瑟夫問題
  • 外文名:Josephus problem
  • 別名:約瑟夫斯置換
  • 類似問題:約瑟夫環
  • 別稱:丟手絹問題
問題來歷,一般形式,pascal代碼1,C++代碼:,pascal代碼2,pascal代碼3,pascal代碼4,c++,pascal代碼5,python代碼,約瑟夫問題10e100版(from vijios),猴子選王,問題表述,編程解決,筆算解決,規律解決,

問題來歷

據說著名猶太歷史學家 Josephus有過以下的故事:在羅馬人占領喬塔帕特後,39 個猶太人與Josephus及他的朋友躲到一個洞中,39個猶太人決定寧願死也不要被敵人抓到,於是決定了一個自殺方式,41個人排成一個圓圈,由第1個人開始報數,每報數到第3人該人就必須自殺,然後再由下一個重新報數,直到所有人都自殺身亡為止。然而Josephus 和他的朋友並不想遵從。首先從一個人開始,越過k-2個人(因為第一個人已經被越過),並殺掉第k個人。接著,再越過k-1個人,並殺掉第k個人。這個過程沿著圓圈一直進行,直到最終只剩下一個人留下,這個人就可以繼續活著。問題是,給定了和,一開始要站在什麼地方才能避免被處決?Josephus要他的朋友先假裝遵從,他將朋友與自己安排在第16個與第31個位置,於是逃過了這場死亡遊戲。
17世紀的法國數學家加斯帕在《數目的遊戲問題》中講了這樣一個故事:15個教徒和15 個非教徒在深海上遇險,必須將一半的人投入海中,其餘的人才能幸免於難,於是想了一個辦法:30個人圍成一圓圈,從第一個人開始依次報數,每數到第九個人就將他扔入大海,如此循環進行直到僅餘15個人為止。問怎樣排法,才能使每次投入大海的都是非教徒。
問題分析與算法設計
約瑟夫問題並不難,但求解的方法很多;題目的變化形式也很多。這裡給出一種實現方法。
題目中30個人圍成一圈,因而啟發我們用一個循環的鏈來表示,可以使用結構數組來構成一個循環鏈。結構中有兩個成員,其一為指向下一個人的指針,以構成環形的鏈;其二為該人是否被扔下海的標記,為1表示還在船上。從第一個人開始對還未扔下海的人進行計數,每數到9時,將結構中的標記改為0,表示該人已被扔下海了。這樣循環計數直到有15個人被扔下海為止。

一般形式

約瑟夫問題是個有名的問題:N個人圍成一圈,從第一個開始報數,第M個將被殺掉,最後剩下一個,其餘人都將被殺掉。例如N=6,M=5,被殺掉的順序是:5,4,6,2,3,1。
分析:
(1)由於對於每個人只有死和活兩種狀態,因此可以用布爾型數組標記每個人的狀態,可用true表示死,false表示活。
(2)開始時每個人都是活的,所以數組初值全部賦為false。
(3)模擬殺人過程,直到所有人都被殺死為止。

pascal代碼1

 
var   a:array [1..20] of integer;  n,m,i,j,k,n1,m1:integer;beginreadln(m,n);for i:=1 to m do  a[i]:=i;m1:=m;n1:=1;while m1>0 dobegin  j:=(n+n1-1-1) mod m1 +1;  n1:=j;  m1:=m1-1;  writeln(a[j]);  for k:=j to m1 do    a[k]:=a[k+1];end;end.

C++代碼:

#include<iostream>using namespace std;main(){    bool a[101]={0};    int n,m,i,f=0,t=0,s=0;    cin>>n>>m;    do    {        ++t;//逐個枚舉圈中的所有位置        if(t>n)            t=1;//數組模擬環狀,最後一個與第一個相連        if(!a[t])            s++;//第t個位置上有人則報數        if(s==m)//當前報的數是m        {            s=0;//計數器清零            cout<<t<<' ';//輸出被殺人編號            a[t]=1;//此處人已死,設定為空            f++;//死亡人數+1        }    }while(f!=n);//直到所有人都被殺死為止}
無論是用鍊表實現還是用數組實現都有一個共同點:要模擬整個遊戲過程,不僅程式寫起來比較煩,而且時間複雜度高達O(nm),當n,m非常大(例如上百萬,上千萬)的時候,幾乎是沒有辦法在短時間內出結果的。我們注意到原問題僅僅是要求出最後的勝利者的序號,而不是要讀者模擬整個過程。因此如果要追求效率,就要打破常規,實施一點數學策略。
為了討論方便,先把問題稍微改變一下,並不影響原意:
問題描述:n個人(編號0~(n-1)),從0開始報數,報到(m-1)的退出,剩下的人繼續從0開始報數。求勝利者的編號。
我們知道第一個人(編號一定是(m-1)) 出列之後,剩下的n-1個人組成了一個新的約瑟夫環(以編號為k=m mod n的人開始):
k k+1 k+2 ... n-2,n-1,0,1,2,... k-2
並且從k開始報0。
我們把他們的編號做一下轉換:
k --> 0
k+1 --> 1
k+2 --> 2
...
...
k-2 --> n-2
變換後就完完全全成為了(n-1)個人報數的子問題,假如我們知道這個子問題的解:例如x是最終的勝利者,那么根據上面這個表把這個x變回去不剛好就是n個人情況的解嗎?!!變回去的公式很簡單,相信大家都可以推出來:x'=(x+k) mod n
如何知道(n-1)個人報數的問題的解?對,只要知道(n-2)個人的解就行了。(n-2)個人的解呢?當然是先求(n-3)的情況 ---- 這顯然就是一個倒推問題!好了,思路出來了,下面寫遞推公式
令f表示i個人玩遊戲報m退出最後勝利者的編號,最後的結果自然是f[n]
遞推公式
f[1]=0;
f[i]=(f[i-1]+m) mod i; (i>1)
有了這個公式,我們要做的就是從1-n順序算出f的數值,最後結果是f[n]。因為實際生活中編號總是從1開始,我們輸出f[n]+1
由於是逐級遞推,不需要保存每個f,程式也是異常簡單:

pascal代碼2

var  n,m,i,s,p:integer;  a:array[1..10000] of integer;begin  read(n,m);//這步不用說了吧?  for i:=1 to n do    a[i]:=1;//先全部賦值1  p:=0;s:=0;//統計人數和報數字用的  repeat    for i:=1 to n do    begin    if a[i]=0    then   continue; //用於等會排除出圈者         s:=s+a[i];//不斷累加(報數字)     if s=m then//出圈者     begin      write(i,' ');列印出圈者;      a[i]:=0;//明白剛才continue的意思了吧      p:=p+1;//人數減少一個;      s:=0;//重頭報起.    end;                      end;  until p=n;//直到人數到了end.

pascal代碼3

Var  a:array[1..100] of integer;  n,m,i,j,p:integer;Begin  write('Input n,m:');  readln(n,m);  for i:=1 to n do    a[i]:=i;  p:=1;                     {p用於記錄報數的位置}  for i:=1 to n do    begin      j:=0;                  {j用於記錄報到的人數}      while j<m do        begin          if a[p]<>0 then j:=j+1;          if p=n then p:=1 else p:=p+1;  {處理邊界情況}        end;      if p<>1           then begin write(a[p-1],' ');a[p-1]:=0;end       {處理邊界情況}           else begin write(a[n],' ');a[n]:=0;end;    end;end.

pascal代碼4

Var  a:array[1..100] of integer;  n,m,p,i,j:integer;Begin  readln(n,m);  for i:=1 to n-1 do   a[i]:=i+1;  a[n]:=1;  p:=n;  for i:=1 to n do    begin      for j:=1 to m-1 do         p:=a[p];      write(a[p],' ');      a[p]:=a[a[p]];   end;End.

c++

#include <iostream>using namespace std;const int m = 3;int main(){    int n, f = 0;    cin >> n;    for (int i = 1; i <= n; i++) f = (f + m) % i;    cout << f + 1 << endl;}

pascal代碼5

var n,m,i,s:integer;beginwrite('N M =');read(n,m);for i:=2 to n dos:=(s+m) mod i;writeln('The winner is ',s+1);end.
這個算法的時間複雜度為O(n),相對於模擬算法已經有了很大的提高。算n,m等於一百萬,一千萬的情況不是問題了。可見,適當地運用數學策略,不僅可以讓編程變得簡單,而且往往會成倍地提高算法執行效率。

python代碼

該程式基於python3.x實現
#控制參數:nums = 41call = 3#參數定義:peoples = []for _ in range(nums):    peoples.append(True)result = []num =1#主邏輯while(any(peoples)):    for index,people in enumerate(peoples):        if people:            if num == call:                peoples[index] = False                result.append(index+1)#                print(index+1)#每輪的出局者                #                print(peoples)#每次的佇列狀態                num = 1                           else:                num += 1print('-'* 25)print('\n總數為%d,報數為%d' % (nums,call))        print('約瑟夫序列為:\n%s\n' % result)      print('-'* 25)

約瑟夫問題10e100版(from vijios)

描述 Description
n個人排成一圈。從某個人開始,按順時針方向依次編號。從編號為1的人開始順時針“一二一”報數,報到2的人退出圈子。這樣不斷循環下去,圈子裡的人將不斷減少。由於人的個數是有限的,因此最終會剩下一個人。試問最後剩下的人最開始的編號。
輸入格式 Input Format
一個正整數n,表示人的個數。輸入數據保證數字n不超過100位。
輸出格式 Output Format
一個正整數。它表示經過“一二一”報數後最後剩下的人的編號。
樣例輸入 Sample Input
9
樣例輸出 Sample Output
3
時間限制 Time Limitation
各個測試點1s
注釋 Hint
樣例說明
當n=9時,退出圈子的人的編號依次為:
2 4 6 8 1 5 9 7
最後剩下的人編號為3
初見這道題,可能會想到模擬。可是數據實在太大啦!!
我們先拿手來算,可知n分別為1,2,3,4,5,6,7,8...時的結果是1,1,3,1,3,5,7,1...
有如下規律:從1到下一個1為一組,每一組中都是從1開始遞增的奇數,且每組元素的個數分別為1,2,4...
這樣就好弄了!!
大體思路如下:
①read(a)
②b:=1,c:=1{b為某一組的元素個數,c為累計所加到的數}
③while c<a do (b:=b*2,c:=b+c){超過目標時停止加數}
⑥c:=c-b{退到前一組}
⑦x:=a-c{算出目標為所在組的第幾個元素}
⑧ans:=x*2-1{求出該元素}
⑨write(ans)
有了思路,再加上高精度就可以了。我寫的代碼比較猥瑣,因為是先把上面的思路敲進去,再寫過程,又把一些簡單的過程合到主程式中了,所以有點亂,也有點猥瑣。起提供思路的作用還是完全可以的吧~~~
var  a,b,c:array[1..105]of longint;  la,lb,lc,i:longint;  s:string;procedure incc;var  i:integer;begin  for i:=1 to 105 do    c:=c+b;  for i:=1 to 104 do    if c>9 then             begin               c:=c+cdiv10;               c:=c mod 10;             end;end;functioncxiaoa:boolean;vari:integer;begincxiaoa:=false;fori:=105downto1doifc<athenbegincxiaoa:=true;break;endelseifc>athenbreak;end;proceduredoubleb;vari:integer;beginfori:=1to105dob:=b*2;fori:=1to104doifb>9thenbeginb:=b+bdiv10;b:=bmod10;end;end;proceduredecc;vari,j:integer;beginfori:=1to104doifc>=bthenc:=c-belsebeginj:=i+1;whilec[j]=0doinc(j);whilej>idobeginc[j]:=c[j]-1;c[j-1]:=c[j-1]+10;dec(j);end;c:=c-b;end;end;procedurefua;vari:integer;beginfori:=1to104doifa>cthena:=a-celsebegina:=a-1;a:=a+10;a:=a-c;end;end;procedureoutit;vari,j:integer;beginfori:=1to105doa:=a*2;fori:=1to104doifa>9thenbegina:=a+adiv10;a:=amod10;end;ifa[1]>0thena[1]:=a[1]-1elsebeginj:=2;whilea[j]=0doinc(j);whilej>1dobegina[j]:=a[j]-1;a[j-1]:=a[j-1]+10;dec(j);end;a[1]:=a[1]-1;end;fori:=105downto1doifa>0thenbeginj:=i;break;end;fori:=jdownto1dowrite(a);end;beginreadln(s);la:=length(s);fori:=ladownto1doa:=ord(s[la+1-i])-ord('0');b[1]:=1;c[1]:=1;whilecxiaoadobegindoubleb;incc;end;decc;fua;outit;end.

猴子選王

問題表述

一. 問題描述:
一堆猴子都有編號,編號是1,2,3 ...m,這群猴子(m個)按照1-m的順序圍坐一圈,從第1開始數,每數到第N個,該猴子就要離開此圈,這樣依次下來,直到圈中只剩下最後一隻猴子,則該猴子為大王。
約瑟夫
"密碼問題"
問題描述:編號為1、2、3、...、N的N個人按順時針方向圍坐一圈,每人持有一個密碼(正整數)。從指定
編號為1的人開始,按順時針方向自1開始順序報數,報到指定數M時停止報數,報M的人出列,並將
他的密碼作為新的M值,從他在順時針方向的下一個人開始,重新從1報數,依此類推,直至所有的
人全部出列為止。請設計一個程式求出出列的順序,其中N≤30,M及密碼值從鍵盤輸入。
二. 基本要求:
(1) 輸入數據:輸入m,n m,n 為整數,n<m
(2)中文提示按照m個猴子,數n 個數的方法,輸出為大王的猴子是幾號 ,建立一個函式來實現此功能

編程解決

  • 1.C程式
#include <stdio.h>#include <malloc.h>#defineLENsizeof(structmonkey)//定義structmonkey這個類型的長度struct monkey{int num;struct monkey *next;};struct monkey *create(int m){struct monkey *head,*p1,*p2;inti;p1=p2=(struct monkey*)malloc(LEN);head=p1;head->num=1;for(i=1,p1->num=1;i<m;i++){p1=(struct monkey*)malloc(LEN);p1->num=i+1;p2->next=p1;p2=p1;}p2->next=head;return head;}struct monkey *findout(struct monkey *start,int n){int i;struct monkey *p;i=n;p=start;for(i=1;i<n-1;i++)p=p->next;return p;}struct monkey *letout(struct monkey *last){struct monkey *out,*next;out=last->next;last->next=out->next;next=out->next;free(out);return next;}int main(){int m,n,i,king;struct monkey *p1,*p2;printf("請輸入猴子的個數m:\n");scanf("%d",&m);printf("每次數猴子的個數n:\n");scanf("%d",&n);if(n==1){king=m;}else{p1=p2=create(m);for(i=1;i<m;i++){p2=findout(p1,n);p1=p2;p2=letout(p1);p1=p2;}king=p2->num;free(p2);}printf("猴王的編號是:%d\n",king);return 0;}
  • C語言程式2
//猴子選大王問題(約瑟夫環問題) #include<stdio.h> #include<string.h> #include<stdlib.h> intfre(charmok[],intk) { inti; printf("\n猴子編號:\n"); for(i=0;mok[i]!='\0';i++) printf("%d\t",mok[i]);//輸出為踢出之前的編號,測試用 for(i=k;mok[i]!='\0';i++) { mok[i]=mok[i+1]; }//一個循環,將k以後的元素前移 putchar('\n'); for(i=0;mok[i]!='\0';i++) printf("%d\t",mok[i]);//輸出踢出之後的編號,測試用 printf("\n按回車繼續下一輪:\n"); getch();//暫停,測試用 return0; } int main() { char mok[50]; int i; int n,s,b;//n表示猴子總數;s表示步進;b表示元素個數及大王編號 int j,k;//j,k都是計數器 mok[0]=1;//初始化mok[0],讓後面編號更簡單的進行 printf("請輸入猴子的總數:\n"); scanf("%d",&n);//輸入猴子的總數 for(i=1;i<n;i++) { mok[i]=i+1; }//對猴子進行編號 mok[n]='\0';//用0來表示數組的結尾 printf("請輸入循環單位:\n"); scanf("%d",&s);//單位長度 b=n;//統計猴子的個數 for(j=1,k=0;;j++,k++) { if(b==1) { b=mok[0]; break; }//如果元素只剩下一個,那么退出循環 if(j==s) { printf("\n它出列了:%d\n",mok[k]); fre(mok,k);//用於元素前移的函式 b--; j=1; }//將猴子從數組中踢出,並重置計數器J。 if(mok[k+1]=='\0') k=-1;//重置計數器k,因為後面有k++所以k要在重置基礎上-1. }//判斷是否為數組最後元素,重置計數器k。 printf("\n最終大王是他:%d\n",b); return0; }
  • C語言程式3: 用數組模擬鍊表
#include<stdio.h>#include<malloc.h>int main(){int *person,i,node,n,m;scanf("%d%d",&n,&m);person=(int*)malloc(sizeof(int)*(n+1));for(i=1;i<n;i++)//初始化圈{person[i]=i+1;//i表示編號為i的人,person[i]的值表示編號為i的人的下一個人的編號}person[n]=1;//編號為n的下一個人的編號是1node=1;while(node!=person[node])//如果某個人的下一個人不是自己,意味著人數超過1人{for(i=1;i<m-1;i++)//這個循環終止於被殺的人的前一個人{node=person[node];//下一個人的編號為node,node的值來自於前一個人的person[node]}printf("%d",person[node]);//輸出被殺的人編號person[node]=person[person[node]];//修改被殺的人的前一個人的person[node]為被殺的人的後一個人的編號node=person[node];//這句話中的node是被殺的人後一個人}printf("%d",node);//輸出最後倖存者的編號return 0;}
  • pascal程式:
vara:array[1..10000]ofinteger;n,s,i,j:integer;beginread(m,n);fori:=1tomdoa[i]:=1;j:=0;fori:=1tomdobegins:=0;whiles<ndobeginifj<mtheninc(j)elsej:=1;s:=s+a[j];end;write(j);a[j]:=0;end;end.
  • c++程式
#include<iostream>#include<conio.h>using namespace std;main(){    int n,m,i,s=0;    cout<<"N:";cin>>n;       cout<<"M:";cin>>m;    for(i=2;i<=n;i++)    s=(s+m)%i;    cout<<"新的大王是:"<<s+1;    getch();  }
  • 約瑟夫數學算法
#include<stdio.h>#include<conio.h>intmain(void){intn,i=0,m,p;scanf("%d%d",&n,&m);//n總人數,m步長while(++i<=n){p=i*m;while(p>n)p=p-n+(p-n-1)/(m-1);printf("%d\n",p);}getch();return0;}
  • 約瑟夫遞推算法
#include<iostream>usingnamespacestd;intking(intM,intN){intk=0;for(inti=2;i<=M;i++)k=(k+N)%i;return++k;}intmain(){intn,m;while(scanf("%d%d",&n,&m)&&n&&m){cout<<king(n,m)<<endl;}return0;}
  • 2、PHP模擬算法
php有非常完善的數據結構模擬方案,可以非常簡潔的解決這樣的問題!
functionking($n,$m){$monkey=range(1,$n);//模擬建立一個連續數組$i=0;while(count($monkey)>1){$i+=1;//開始查數$head=array_shift($monkey);//直接一個一個出列最前面的猴子if($i%$m!=0){array_push($monkey,$head);//如果沒數到m或m的倍數,則把該猴放回尾部去.}//否則就拋棄掉了}return$monkey[0];}echo'剩餘',king(3,4),'號猴子';
3. Python遍歷數組
def Monkey(n, M):    if n == 0 or M == 1: #過濾兩種特殊情況        return 0    L = list(map(list,list(enumerate([True] * n,start=1)))) #兩種狀態以布爾值表示    counter = 0    while [L[i][1] for i in range(len(L))].count(True) > 1:        for i in range(len(L)):            if L[i][1] == True:                counter += 1            if counter % M == 0 and L[i][1] == True:                L[i][1] = False    return list(filter(lambda x:x[1] == True, L))[0][0]    Monkey(2009, 3)

筆算解決

筆算解決約瑟夫問題
在M比較小的時候 ,可以用筆算的方法求解,
M=2
即N個人圍成一圈,1,2,1,2的報數,報到2就去死,直到只剩下一個人為止。
當N=2^k的時候,第一個報數的人就是最後一個死的,
對於任意的自然數N 都可以表示為N=2^k+t,其中t<n/2
於是當有t個人去死的時候,就只剩下2^k個人 ,這2^k個人中第一個報數的就是最後去死的。這2^k個人中第一個報數的人就是2t+1
於是就求出了當M=2時約瑟夫問題的解:
求出不大於N的最大的2的整數次冪,記為2^k,最後一個去死的人是2(N-2^k)+1
M=3
即N個人圍成一圈,1,2,3,1,2,3的報數,報到3就去死,直到只剩下一個人為止。
此時要比M=2時要複雜的多
我們以N=2009為例計算
N=2009,M=3時最後被殺死的人記為F(2009,3),或者可以簡單的記為F(2009)
假設這種情況下還剩下n個人,則下一輪將殺死[n/3]個人,[]表示小於等於這個數的最大整數,還剩下n-[n/3]個人
設這n個人為a1,a2,...,a(n-1),an
從a1開始報數,一圈之後,剩下的人為a1,a2,a4,a5,...a(n-n mod 3-1),a(n-n mod 3+1),..,an
於是可得:
1、這一輪中最後一個死的是a(n-n mod 3),下一輪第一個報數的是a(n-n mod 3+1)
2、若3|n,則最後死的人為新一輪的第F(n-[n/3])個人
若n mod 3≠0 且f(n-[n/3])<=n mod 3則最後死的人為新一輪的第n-[n/3]+F(n-[n/3])-(n mod 3)人
若n mod 3≠0 且f(n-[n/3])>n mod 3則最後死的人為新一輪的第F(n-[n/3])-(n mod 3)人
3、新一輪第k個人對應原來的第 3*[(k-1)/2]+(k-1)mod 2+1個人
綜合1,2,3可得:
F(1)=1,F(2)=2,F(3)=2,F(4)=1,F(5)=4,F(6)=1,
當f(n-[n/3])<=n mod 3時 k=n-[n/3]+F(n-[n/3])-(n mod 3),F(n)=3*[(k-1)/2]+(k-1)mod 2+1
當f(n-[n/3])>n mod 3時 k=F(n-[n/3])-(n mod 3) ,F(n)=3*[(k-1)/2]+(k-1)mod 2+1
這種算法需要計算 [log(3/2)2009]次 這個數不大於22,可以用筆算了
於是:
第一圈,將殺死669個人,這一圈最後一個被殺死的人是2007,還剩下1340個人,
第二圈,殺死446人,還剩下894人
第三圈,殺死298人,還剩下596人
第四圈,殺死198人,還剩下398人
第五圈,殺死132人,還剩下266人
第六圈,殺死88人,還剩下178人
第七圈,殺死59人,還剩下119人
第八圈,殺死39人,還剩下80人
第九圈,殺死26人,還剩下54人
第十圈,殺死18人,還剩36人
十一圈,殺死12人,還剩24人
十二圈,殺死8人,還剩16人
十三圈,殺死5人,還剩11人
十四圈,殺死3人,還剩8人
十五圈,殺死2人,還剩6人
F(1)=1,F(2)=2,F(3)=2,F(4)=1,F(5)=4,F(6)=1,
然後逆推回去
F(8)=7 F(11)=7 F(16)=8 f(24)=11 f(36)=16 f(54)=23 f(80)=31 f(119)=43 f(178)=62 f(266)=89 f(398)=130
F(596)=191 F(894)=286 F(1340)=425 F(2009)=634

規律解決

視頻中給出了經典的約瑟父問題的數學解法,當猴子選王問題的N=2時就是經典的約瑟父問題
對於經典約瑟父問題,視頻中的解法是:
1)找出令等式
成立的最大的
,記為
2)求解出
3)所以,最後留下來的人的序號為
視頻中給出的解釋是:
時,序號為1的人總是是最後留下來的人。對於
,當去掉
個人後,剩下的人正好組成
個人圍成的圈,此圈中的序號1的人將是最後留下來的人。而對應到原來的圈,這個人的序號就是
,因為去掉
個人時正好就跳過了
個人,而下一個人的序號就是
推廣到猴子選王問題,從以上解法不難看出,解法就是把2換成N,即:
1)找出令等式
成立的最大的
,記為
2)求解出
3)所以,最後留下來的猴子的序號為
,mod是取餘數,例如:3 mod 2 = 1
--------------------------
m=8, N=3,8=3^1+5, 按照他的算法,此時N=3,l=5, 按照他的算法最後剩下來的是8,事實上很容易直接驗算最後留下來的是7,上面的公式是錯誤的。

相關詞條

熱門詞條

聯絡我們