紀奎

紀奎

紀奎,河北師範大學教授,博士生導師,河北師範大學數學科學院副院長。

基本介紹

  • 中文名:紀奎
  • 民族:漢族 
  • 出生地山東省郯城縣 
  • 出生日期:1981年4月23日 
  • 畢業院校:河北師範大學 
  • 學位/學歷:理學博士 
  • 專業方向泛函分析 
  • 職務:河北師範大學數學科學院副院長 
教育背景,訪問經歷,教學情況,科研情況,

教育背景

博士,運算元理論與運算元代數,河北師範大學,2005-2008
紀奎
紀奎
碩士,運算元理論與運算元代數,河北工業大學,2002-2005
學士,數學,聊城大學,1998-2002

訪問經歷

訪問學者,菲爾茲研究所(加拿大),2007 訪問學者,波多黎各大學(美國),2009國家公派訪問學者,IndianInstitute of Science (印度); 2012

教學情況

本科生課程:《高等數學》、《數學分析》、《複變函數》
研究生課程:《運算元理論》、《C*代數》

科研情況

1:科研項目
(1)國家自然科學基金青年基金:運算元代數的分類,批准號:10901046,2010-2012(已結題);主持人
(2)國家自然科學基金面上項目:曲率,第二基本形式與幾何運算元的相似性的研究,批准號:11471094,2015-2018(已結題)主持人;
(3)高等學校全國優秀博士學位論文作者專項資金(已結題)主持人;
(4)河北省傑出青年基金;擬齊次曲線的相似分類,批准號:A2016205219,2016-2018(已結題)主持人;
(5)河北省2014年青年拔尖人才;復幾何在運算元代數中的套用,批准號BJ2014037,2015-2017,(已結題)主持人;
(6)國家自然科學基金重點項目:運算元代數中的幾何與分類理論,批准號11831006 (在研) 參與人;
(7)國家自然科學優秀青年基金項目:運算元理論與運算元代數,批准號:11922108 主持人,2020-2022(在研)
2:學術論文:
(1)Jiang, Chunlan, Guo, Xianzhou, and Ji, Kui., K-group and similarityclassification of operators. J. Funct.Anal. 225 (2005), n o.1 , 167--192.
(2)Jiang, Chunlan and Ji, Kui. Similarity classification of holomorphic curves. Adv. Math. 215 ( 2007), no.2 , 446--468.
(3)He, Hua and Ji, Kui., Strongly irreducible decomposition and similarity classification of operators. Illinois. J. Math 51 ( 2007) , no.2 , 409—428.
(4)Ji, Kui and Jiang, Chunlan, A complete classification of AI algebra with the ideal property, Canada. J. Math. 63, No.2,381-412 (2011).
(5)Ji, Kui, Similarity classification and properties of some extended holomorphic curves. Integral Equations and Operator Theory 69 (2011), no.1,133–148.
(6)Jiang, Chunlan; Ji, Kui .Theory of strongly irreducible operators and its applications. Adv. Math.《數學進展》(China)40 (2011), no. 4, 385–392.
(7)Ji Kui, Shi Rui, Similarity of multiplication operators on the Sobolev disk algebra. Acta. Math. Sin. (Engl. Ser.)29 (2013), no. 4, 789–800.
(8)Ji Kui, On a generalization of B_1(\Omega) on C*algebras, Proc. Indian Acad. Sci. Math. Sci. Vol 124. N0.2. May (2014),243-253.
(9)Ji, Kui, Jiang, Chunlan, Dinesh Kumar Keshari, Gadadhar Misra, Flag structure for operators in the Cowen-Douglas class, C.R.Acad.Sci.Paris.Ser. I, 352 (2014) 511-514.
(10)Hou, Yingli and Ji, Kui On the extended holomorphic curves on C* algebras. Oper. Matrices 8 (2014), no. 4,999–1011.
(11)Dai, Hong; Hou, Yingli and Ji, Kui A note on curvature and similarity of some CowenDouglas operators. J. Math. Anal.Appl. 444 (2016), no. 1, 167–181.
(12)Hou, Yingli; Ji, Kui and Kwon, HyunKyoung The trace of the curvature determines similarity. Stud. Math.236, No. 2, 193-200 (2017).
(13)Ji, Kui, Jiang, Chunlan, Dinesh Kumar Keshari, Gadadhar Misra, Rigidity of the flag structure for a class of Cowen-Douglas operators. J. Funct. Anal. 272 (2017), no. 7, 2899–2932
(14)Jiang, Chunlan, Ji, Kui, Gadadhar Misra, Classification of quasihomogeneous holomorphic curves and operators in the Cowen-Douglas class. J. Funct. Anal. 273 (2017), no. 9,2870–2915.
(15)Ji, Kui. Curvature formulas of holomorphic curves on C*-algebras and Cowen-Douglas operators. Complex Anal. Oper. Theory 13 (2019), no.4, 1609–1642.
(16)Ji,Kui Jaydeb Sarkar, Similarity of quotient Hilbert modules in the Cowen–Douglasclass, European Journal of Mathematics,5 (2019), no. 4, 1331–1351.
(17)Tian, Liang, Guo, Wei and Ji, Kui, A note on a subclass of Cowen-Douglasoperators, Acta Mathematica Sinica, English Series, 35 (2019), no. 11, 1795–1806.
(18)Ji, Kui, Hyun-Kyoung Kwon, and Xu, Jing, N-hypercontractivity and similarity of Cowen-Douglas operators, Linear Algebra Appl. 592 (2020),20–47.
(19)Jiang, Chunlan, Ji, Kui, Integral curvature and similarity of Cowen-DouglasOperators, In: Curto R.E., Helton W., Lin H., Tang X., Yang R., Yu G. (eds)Operator Theory,Operator Algebrasand Their Interactions with Geometry and Topology. Operator Theory: Advances and Applications, 278 (2020),373-390.
(20)Ma,Zhenhua, Ji, Kui and Li, Yucheng, Compact operators under Orlicz functions, Indian Journal of Pure and Applied Mathematics, 51(2020), 1633–1649.
(21)Hou, yingli, Ji, Kui and Linlin, Zhao, Factorization of generalized holomorphic curve and homogeneity of operators, Banach. J. Math. Anal.15, 43 (2021).
(22)Jiang, Chunlan, Ji, Kui and Wu, Jinsong, Similarity Invariants of Essentially normal Cowen-Douglas Operators and Chern Polynomials , Israel Journal of Mathematics,248,(2022)229–270.
(23)Ji,Kui and Ji, Shanshan, The metrics of Hermitian holomorphic vector bundles and the similarity of Cowen-Douglas operators,Indian Journal of Pure and Applied Mathematics, 53 (2022), no. 3, 736–749.
(24)Ji, Kui, Hyun-Kyoung Kwon, Jaydeb Sarkar,and Xu, Jing, A subclass of the Cowen-Douglas class and similarity, Mathematische Nachrichten, to appear.
(25)Jiang,Chunlan, Ji, Kui and Dinesh Kumar Keshari, Geometric Similarity invariants of Cowen-Douglas Operators, Journal of Noncommutative Geometry, to appear.
(26)Ji,Kui and Ji, Shanshan, A note on unitary equivalence of operators acting onreproducing kernel Hilbert spaces, Houston Journal of Mathematics, to appear.
(27)Hou, Yingli, Ji, Kui, Ji, Shanshan and Xu, Jing, Geometry of holomorphic vector bundles and similarity of commuting operator tuples,Journal of Operator Theory, to appear.
(28)Jiang,Chunlan, Fang, Junsheng and Ji Kui, Cowen Douglas operators and the third of Halmos' ten problems, arXiv:1904.10401.
(29) Ji,Kui, Ji, Shanshan and Xu, Jing On the similarity of restriction of the operator to an invariant subspace,arXiv:2012.13535.
(30)Ji, Kui, Hyun-Kyoung Kwon, Ji, Shanshan and Xu, Jing, The Cowen-Douglas theory for operator tuples and similarity, in prepare.

相關詞條

熱門詞條

聯絡我們