簡明統計力學

簡明統計力學

《簡明統計力學(英文版)》是一部講述統計力學的優秀教材,內容簡明,自成體系。統計力學作為物理專業的一個很活躍的區域,並且在經濟、社會行為、算法理論和進化生物等多種領域中有著廣泛的套用。

基本介紹

  • 書名:簡明統計力學
  • 作者:佩里特 (Luca Peliti)
  • 出版日期:2013年10月1日
  • 語種:簡體中文, 英語
  • ISBN:9787510061493
  • 外文名:Statistical Mechanics in a Nutshell
  • 出版社:世界圖書出版公司北京公司
  • 頁數:398頁
  • 開本:16
  • 品牌:世界圖書出版公司北京公司
基本介紹,內容簡介,作者簡介,圖書目錄,

基本介紹

內容簡介

《簡明統計力學(英文版)》由世界圖書出版公司出版。

作者簡介

作者:(義大利)佩里特(Luca Peliti)

圖書目錄

Preface to the English Edition
Preface
1 Introduction
1.1 The Subject Matter of Statistical Mechanics
1.2 Statistical Postulates
1.3 An Example: The Ideal Gas
1.4 Conclusions
Recommended Reading
2 Thermodynamics
2.1 Thermodynamic Systems
2.2 Extensive Variables
2.3 The Central Problem of Thermodynamics
2.4 Entropy
2.5 Simple Problems
2.6 Heat and Work
2.7 The Fundamental Equation
2.8 Energy Scheme
2.9 Intensive Variables and Thermodynamic Potentials
2.10 Free Energy and Maxwell Relations
2.11 Gibbs Free Energy and Enthalpy
2.12 The Measure of Chemical Potential
2.13 The Koenig Born Diagram
2.14 Other Thermodynamic Potentials
2.15 The Euler and Gibbs-Duhem Equations
2.16 Magnetic Systems
2.17 Equations of State
2.18 Stability
2.19 Chemical Reactions
2.20 Phase Coexistence
2.21 The Clausius-Clapeyron Equation
2.22 The Coexistence Curve
2.23 Coexistence of Several Phases
2.24 The Critical Point
2.25 Planar Interfaces
Recommended Reading
3 The Fundamental Postulate
3.1 Phase Space
3.2 Observables
3.3 The Fundamental Postulate: Entropy as Phase-Space Volume
3.4 Liouville's Theorem
3.5 Quantum States
3.6 Systems in Contact
3.7 Variational Principle
3.8 The Ideal Gas
3.9 The Probability Distribution
3.10 Maxwell Distribution
3.11 The Ising Paramagnet
3.12 The Canonical Ensemble
3.13 Generalized Ensembles
3.14 The p-T Ensemble
3.15 The Grand Canonical Ensemble
3.16 The Gibbs Formula for the Entropy
3.17 Variational Derivation of the Ensembles
3.18 Fluctuations of Uncorrelated Particles
Recommended Reading
4 Interaction-Free Systems
4.1 Harmonic Oscillators
4.2 Photons and Phonons
4.3 Boson and Fermion Gases
4.4 Einstein Condensation
4.5 Adsorption
4.6 Intemal Degrees of Freedom
4.7 Chemical Equilibria in Gases
Recommended Reading
Phase Transitions
5.1 Liquid-Gas Coexistence and Critical Point
5.2 Van der Waals Equation
5.3. Other Singularities
5.4 Binary Mixtures
5.5 Lattice Gas
5.6 Symmetry
5.7 Symmetry Breaking
5.8 The Order Parameter
5.9 Peierls Argument
5.10 The One-Dimensional Ising Model
5.11 Duality
5.12. Mean-Field Theory
5.13 Variational Principle
5.14 Correlation Functions
5.15 The Landau Theory
5.16 Critical Exponents
5.17 The Einstein Theory of Fluctuations
5.18 Ginzburg Criterion
5.19 Universality and Scaling
5.20 Partition Function of the Two-Dimensional Ising Model
Recommended Reading
6 Renormalization Group
6.1 Block Transformation
6.2 Decimation in the One-Dimensional Ising Model
6.3 Two-Dimensional Ising Model
6.4 Relevant and Irrelevant Operators
6.5 Finite Lattice Method
6.6 Renormalization in Fourier Space
6.7 Quadratic Anisotropy and Crossover
6.8 Critical Crossover
6.9 Cubic Anisotrophy
6.10 Limit n → ∞
6.11 Lower and Upper Critical Dimensions
Recommended Reading
7 Classical Fluids
7.1 Partition Function for a Classical Fluid
7.2 Reduced Densities
7.3 Virial Expansion
7.4 Perturbation Theory
7.5 Liquid Solutions
Recommended Reading
8 Numerical Simulation
8.1 Introduction
8.2 Molecular Dynamics
8.3 Random Sequences
8.4 Monte Carlo Method
8.5 Umbrella Sampling
8.6 Discussion
Recommended Reading
9 Dynamics
9.1 Brownian Motion
9.2 Fractal Properties of Brownian Trajectories
9.3 Smoluchowski Equation
9.4 Diffusion Processes and the Fokker-Planck Equation
9.5 Correlation Functions
9.6 Kubo Formula and Sum Rules
9.7 Generalized Brownian Motion
9.8 Time Reversal
9.9 Response Functions
9.10 Fluctuation-Dissipation Theorem
9.11 Onsager Reciprocity Relations
9.12 Affinities and Fluxes
9.13 Variational Principle
9.14 An Application
Recommended Reading
10 Complex Systems
10.1 Linear Polymers in Solution
10.2 Percolation
10.3 Disordered Systems
Recommended Reading
Appendices
Appendix A Legendre Transformation
A.1 Legendre Transform
A.2 Properties of the Legendre Transform
A.3 Lagrange Multipliers
Appendix B Saddle Point Method
B.1 Euler Integrals and the Saddle Point Method
B.2 The Euler Gamma Function
B.3 Properties of N-Dimensional Space
B.4 Integral Representation of the Delta Function
Appendix C A Probability Refresher
C.1 Events and Probability
C.2 Random Variables
C.3 Averages and Moments
C.4 Conditional Probability: Independence
C.5 Generating Function
C.6 Central Limit Theorem
C.7 Correlations
Appendix D Markov Chains
D.1 Introduction
D.2 Definitions
D.3 Spectral Properties
D.4 Ergodic Properties
D.5 Convergence to Equilibrium
Appendix E Fundamental Physical Constants
Bibliography
Index
  

相關詞條

熱門詞條

聯絡我們