潤滑理論

潤滑理論是套用流體動力學方法研究粘性潤滑膜的壓力分布、支承力和摩擦阻力的理論,其目的是減小機器零件在運轉時的摩擦阻力和提高潤滑膜的承載能力。

基本介紹

  • 中文名:潤滑理論
  • 外文名:theory of lubrication
  • 套用學科:流體動力學
簡介,幾種主要類型的潤滑,油膜注滑,氣膜潤滑,彈性流體動力潤滑,流體靜力潤滑,參考文獻,

簡介

設軸承和軸頸之間的狹縫中充滿粘性潤滑流體,當軸承以一定速度旋轉時產生巨大的壓差,軸頸被潤滑膜托起,形成偏心圓環,使軸承和軸頸避免直接接觸,起到減少摩擦阻力的潤滑作用。潤滑理論中通常假定:粘性流體作定常運動,而且處於層流狀態,潤滑膜的厚度比它的長度和寬度小得多;徹體力和慣性力忽略不計。因此潤滑理論屬於粘性流體小雷諾數流動的範圍。根據這些假定,可將流體力學基本方程組簡化為雷諾方程:
潤滑理論
邊界條件為:
y=0 u=U v=V , w=W ,
y=h u=0 , v=0 , w=0,
圖1  潤滑膜示意圖圖1 潤滑膜示意圖
式中u、v、w分別為沿x、y、z坐標軸的流速分量;U、V、W為流速分量的邊界值;p為流體壓力;ρ為流體密度;μ為流體的動力粘性係數(見粘性);h為潤滑膜厚度(圖1)。此方程是潤滑理論的基本方程。式(1)是二價、二維、變係數、非齊次偏微分方程,一般難以求解,通常採用近似方法。

幾種主要類型的潤滑

油膜注滑

以油膜作注滑劑的潤滑。潤滑油一般是不可壓縮的,機器零件界面只有一個方向的運動 (u=U,υ=0,ω=0),所以式(1)可簡化為如下常用式
潤滑理論
圖2  徑向軸承潤滑簡圖圖2 徑向軸承潤滑簡圖
圖2為徑向軸承的潤滑簡圖。圖中O為軸頸中心;O'為軸承中心;e為偏心距OO';r、R分別為軸頸半徑、軸承的內半徑;h為潤滑膜厚度;U為軸頸表面的線速度;θ為極角。對這類潤滑問題可將式(2)化為下式:
潤滑理論
式中
。如果忽略z方向的壓力變化,且假定粘性係數不變,則式(2)可簡化為一維形式:
潤滑理論
根據圖3,邊界條件為:x=0,p=0;x=l,p=0 (5) 。從式(4)、(5)可求得壓力分布p,單位寬度潤滑膜上所能承受的總支承力p和單位寬度動塊界面上的摩擦阻力F:
潤滑理論
圖3  一維潤滑膜和壓力分布圖3 一維潤滑膜和壓力分布
式中符號的意義見圖3.。從圖3的壓力分布曲線可看出,最大壓力pmax的位置不在滑塊中點,而在中點偏後處。|F|/|P|正比於小量h0/l,即變厚度薄層中的粘性流體運動能產生遠大於總摩阻的支撐力。在緩慢的變薄層粘性流動中產生高壓是潤滑型流動的顯著特點之一。
在上述計算中假設運動是一維的。事實上軸承在z方向的尺度是有限的,即有端泄效應。由於壓力在z方向上的減小,人們發現支承力較二維情形有顯著的減小。其次在計算中假設粘性係數是常數,這顯然是一種近似。由於摩擦生熱,潤滑油的溫度會升高,從而使油的粘度和支承力 曲線急劇下降。隨著高速和高溫(低粘度)的出現,慣性力變得可以和粘性力比擬,完全忽略慣性力的作法必須修正。可以採用逐次逼近法加以改進。計算表明,慣性修正一般不超過10%。 對於有z方向壓力變化的二維流動和兩偏心圓柱間的粘性流體運動須解式(2)和(3)。

氣膜潤滑

以空氣等氣體膜作潤滑劑的潤滑。這種潤滑,須考慮壓縮性影響。設氣體的壓力和密度滿足多方過程方程:
式中n為多方指數。將上式代入(1)式,即得氣膜潤滑的雷諾方程:
潤滑理論
通常氣膜潤滑可看作等溫過程,即n=1,於是得到:
潤滑理論
即使在最簡單情況下,氣膜潤滑的雷諾方程也是複雜的,一般須用數值方法求解。
上述雷諾方程的各種形式只適用於低速區。如果慣性力和粘性力為同一數量級,由於運動微分方程中包含非線性項,就難以求出此方程的精確解。如果慣性力在總的流體動力中的作用較小,可用疊代法、平均慣性法、級數展開法等近似法求解。
對於剪下流動,實驗求得的層流轉變為湍流的臨界雷諾數
,對於壓力流動,臨界雷諾數一般取Recr=2000。實際上,在軸承潤滑中,由於兩種形式的流動同時存在,穩定性更差,因此,在一般軸承設計中取Recr=1000。對於徑向軸承,則取
流動狀態轉變為湍流後,必須根據湍流理論求解。湍流潤滑的研究開始較晚。現有湍流潤滑的計算方法一般屬於“0”方程模式和“1”方程模式。對於不可壓縮準定常二維湍流潤滑,基本方程為:
潤滑理論
式中pˉ為平均壓力,kx kz為湍端流係數。湍流潤滑方程形式上類似於上述雷諾方程。在工程計算中,由於所取的湍流模式不同,湍流係數也不同。如果選用建立在壁面律基礎上的湍流模式,則取

彈性流體動力潤滑

具有變粘性係數潤滑膜和彈性變形接觸面的潤滑。例如,齒輪嚙合時的潤滑以及球軸承的球體與內、外圈之間的潤滑。它們的共同特點是載荷作用在微小的接觸面積上,形成高壓區,從而使潤滑劑的粘性係數發生變化,接觸面發生彈性變形。這類彈性流體潤滑問題的研究,歸結為聯立求解潤滑方程、彈性變形方程和粘性-壓力方程。如果等溫條件不再有效,還要考慮潤滑的能量方程和熱傳導方程。此外,要套用氣穴邊界條件,計算非常複雜。工程計算中常用的是簡化後的半經驗半理論的公式。

流體靜力潤滑

潤滑膜兩界面無相對切向運動的潤滑。上述基本潤滑方程均屬流體動力潤滑範圍。對於這類潤滑問題,潤滑膜建立的必要條件是兩界面必須有相對的切向運動,膜厚必須收斂。但是,對於流體靜力潤滑問題,由於潤滑膜的建立僅依賴於壓差,因此只需要一個邊界上的壓力高於另一邊界上的壓力。對於二維靜力潤滑問題,雷諾方程可簡化為拉普拉斯方程:
這類潤滑問題的邊界條件也比較簡單(例如空穴現象很少發生),因此,對於常用的任何形狀的潤滑膜,一般都可求得數值解。
除以上幾種類型的潤滑外,在核發反應堆和核動力渦輪發電機等高溫和液態金屬的工作環境中,有人研究採用磁流體潤滑,以便通過外加電磁場來提高液態金屬潤滑滑膜的承載能力。因導電流體通過磁場時會感生電流,電流和磁場相互作用產生洛倫茲力,這個力的方向與粘性力的方向一致,從而提高承載能力。

參考文獻

  1. 詞條作者:郭本鐵 應玉燕.《中國大百科全書》74卷(第一版)力學 詞條:流體力學中國大百科全書出版社 ,1987 :413-414頁
  2. O.平克斯、B. 斯德因李希特著,西安交通大學軸承研究小組譯:《流體動力潤滑理論》,機構工業出版社,北京,1980。(O. Pin-kus and B. Sternlicht, Theory of Hydrodynamic Lubrica-tion, McGraw-Hill, New York, 1961.)

相關詞條

熱門詞條

聯絡我們