深度學習理論與實戰PyTorch案例詳解

深度學習理論與實戰PyTorch案例詳解

《深度學習理論與實戰PyTorch案例詳解》是2021年清華大學出版社出版的圖書。

基本介紹

  • 中文名:深度學習理論與實戰PyTorch案例詳解
  • 作者:陳亦新
  • 出版社:清華大學出版社
  • 出版時間:2021年1月1日
  • 頁數:316 頁
  • 開本:16 開
  • 裝幀:平裝
  • ISBN:9787302568506
內容簡介,圖書目錄,作者簡介,

內容簡介

本書介紹內容包括支持向量機、線性回歸、決策樹、遺傳算法、深度神經網路(VGG、GooleLeNet、Resnet、MobileNet、EfficientNet)、循環神經網路(LSTM、GRU、Attention)、生成對抗網路(DCGAN、WGAN-GP)、自編碼器、各種聚類算法、目標檢測算法(YOLO、MTCNN)以及強化學習,有助於人工智慧新人搭建一個全面且有用的基礎框架。
本書包含8個實戰,分別是:決策樹、MNIST手寫數字分類、GAN基礎之手寫數字生成、GAN最佳化、風格遷移棄煮懂、目標檢測(YOLO)、人臉檢測(MTCNN)和自然語言處理。8個實戰可以讓讀者對PyTorch的使用達到較高棄付端提水平。

圖書目錄

目錄
第1章支持向量機
1.1SVM的原理
1.2SVM求解
1.3核函式
1.4軟間隔
1.5小結
第2章線性回歸與非線性回歸
2.1線性回歸
2.1.1線性回歸問題的一般形式
2.1.2線性回歸中的最最佳化問題
2.1.3問題的求解
2.2非線性回歸分析
2.3初見梯度下降
2.4Python圖解梯度下降
2.5小結
第3章基於規則的決策樹模型
3.1決策樹發展史
3.2決策樹算法
3.2.1ID3算法
3.2.2C4.5
3.2.3CART
3.2.4隨機森林
3.3Boosting家族
3.3.1XGBoost
3.3.2LightGBM
3.3.3CatBoost
3.4小結
第4章遺傳算法家族
4.1遺傳算法
4.1.1編碼
4.1.2初始化種群
4.1.3自然選擇
4.1.4交閥旬叉重組
4.1.5基因突變
4.1.6收斂
4.1.7遺傳算法總結
4.2蟻群算法
4.2.1螞蟻系統
4.2.2精英螞蟻系統
4.2.3最大最小螞蟻系統道翻櫻
4.2.4小結
第5章神經網路
5.1基本組成
5.1.1神經元
5.1.2層
5.2反向傳播
5.2.1複習
5.2.2鋪墊
5.2.3公式推導
5.3反向傳播神經網路
5.4卷積神經網路
5.4.1卷積運算
5.4.2卷積層
5.4.3池化層
5.5循環神經網路
5.5.1RNN用途
5.5.2RNN結構
5.5.3RNN的反向傳播——BPTT
5.6小結
第6章深度神經網路
6.1概述
6.2VGG網路
6.3GoogLeNet
6.3.1Inception v1
6.3.2Inception v2/v3
6.3.3Inception v4
6.3.4InceptionResnet
6.3.5GoogLeNet小結
6.4Resnet
6.5MobileNet
6.5.1CNN計算量如何計算
6.5.2深度可分離卷積
6.5.3ReLU6
6.5.4倒殘差
6.6EfficientNet
6.6.1模型的數學表達
6.6.2複合縮放
6.7風格遷移
6.7.1內容損失函式
6.7.2風格損失函式
6.7.3風格遷移的梯度下降
第7章循環神經網路
7.1長短期記憶網路
7.1.1LSTM結構
7.1.2LSTM出現原因
7.2GRU
7.3注意力機制
7.3.1編碼解碼框架
7.3.2Attention結構
第8章無監督學習
8.1什麼是無監督學習
8.葛籃棵2聚類算法
8.2.1Kmeans算法
8.2.2分級聚類
8.2.3具有噪聲的基於密度的聚類方法
8.3生成對抗網路
8.3.1通俗易懂的解釋
8.3.2原理推導
8.3.3損失函式承擔榜屑的問題
8.3.4條件生成對抗網路
8.4自編漏講愚碼器
8.4.1自編碼器概述
8.4.2去噪自編碼器
8.4.3變分自編碼器
第9章目標檢測
9.1目標檢測概述
9.1.1通俗理解
9.1.2鋪墊知識點
9.1.3發展史
9.2YOLO v1
9.2.1輸出
9.2.2網路
9.2.3輸入
9.2.4損失函式
9.2.5小結
9.3YOLO v2
9.3.1mAP
9.3.2改進
9.3.3整體流程
9.3.4小結
9.4YOLO v3
第10章強化學習
10.1鋪墊知識
10.1.1什麼是RL
10.1.2馬爾可夫決策過程
10.1.3回報Return
10.1.4價值函式
10.1.5貝爾曼方程
10.2DQN
10.2.1DQN損失函式
10.2.2DQN訓練技巧
10.2.3DDQN
10.2.4基於優先權的記憶回放
10.2.5Dueling DQN
10.3全面講解基礎知識
10.3.1策略梯度
10.3.2ActorCritic行動者評論家算法
10.3.3A2C與優勢函式
10.3.4Offpolicy
10.3.5連續動作空間
第11章GAN進階與變種
11.1基礎GAN存在的問題
11.2DCGAN
11.2.1反卷積(轉置卷積+微步卷積)
11.2.2空洞卷積
11.3WGAN
11.3.1GAN問題的再探討
11.3.2解決方案
11.4WGANGP
11.4.1WGAN的問題
11.4.2梯度懲罰
11.5VAEGAN
11.6CVAEGAN
第12章實戰1: 決策樹與隨機森林
12.1數據集介紹
12.1.1乳腺癌數據簡介
12.1.2任務介紹
12.2解決思路
12.2.1Pandas庫與Sklearn介紹
12.2.2探索數據
12.2.3決策樹模型
12.2.4隨機森林模型
12.3小結
第13章實戰2: MNIST手寫數字分類
13.1數據集介紹
13.1.1MNIST簡介
13.1.2任務介紹
13.2解決思路
13.2.1圖像處理
13.2.2構建模型的三要素
13.2.3訓練模型
13.2.4評估模型
13.3進一步改進finetune
13.4小結
第14章實戰3: GAN基礎之手寫數字對抗生成
14.1GAN任務描述
14.2GAN解決過程及講解
14.2.1數據準備
14.2.2模型搭建
14.2.3訓練過程(核心)
14.3GAN進化——CGAN
14.4小結
14.5問題發現
第15章實戰4: GAN進階與最佳化
15.1前情提要
15.2WGAN(2017)
15.3WGANGP(2017)
15.4DCGAN(2016)
15.5CVAEGAN
第16章實戰5: 風格遷移
16.1任務介紹
16.2解決思路
16.2.1載入模型
16.2.2載入圖片
16.2.3獲取特徵圖和Gram矩陣
16.2.4AI作畫
16.3小結
第17章實戰6: 目標檢測(YOLO)
17.1Darknet.py
17.1.1__init__(self)
17.1.2forward(self,x)
17.1.3小結
17.2Detect.py
第18章實戰7: 人臉檢測
18.1什麼是MTCNN
18.2MTCNN流程
18.2.1圖像金字塔
18.2.2PNet
18.2.3RNet
18.2.4ONet
18.3訓練過程
第19章實戰8: 自然語言處理
19.1正則表達式
19.2快速上手textblob
19.2.1極性分析和詞性標註
19.2.2詞幹提取和拼寫校正
19.2.3單詞字典
19.3基本概念
19.3.1樸素貝葉斯
19.3.2Ngram模型
19.3.3混淆矩陣
19.4基於樸素貝葉斯的垃圾郵件分類
19.5基於隨機森林的垃圾郵件分類
第20章Python與PyTorch相關
20.1PyTorch模型類
20.2PyTorch的data類
20.3激活函式
20.4損失函式
20.4.1均方誤差
20.4.2交叉熵
20.5model.train()與model.eval()
20.6Python的命令行庫argparse
第21章機器學習相關
21.1訓練集、測試集、驗證集
21.2epoch、batch、minibatch等
21.3規範化
21.3.1內部協變數偏移
21.3.2批規範化
21.3.3BN vs LN
21.4SGD與MBGD
21.5適應性矩估計
21.5.1Momentum
21.5.2AdaGrad
21.5.3RMSProp
21.5.4Adam算法小結
21.6正則化與範式
21.7標籤平滑正則化
21.8RBM與DBN
21.9圖片的RGB和HSV
21.10網中網結構
21.11K近鄰算法
21.12模擬退火算法
21.13流形學習
21.14端側神經網路GhostNet(2019)
21.14.1Ghost Module
21.14.2分組卷積
21.14.3SE Module
參考文獻

作者簡介

陳亦新 碩士,技術作家,涉及人工智慧、圖像處理和醫學等多個領域,是一名熱愛AI算法、立志AI落地造福社會的普通人。他因心思細膩、擅長換位思考、為人熱情,常常被評價為一名優秀的知識傳播者。他撰寫的技術公眾號“機器學習煉丹術”在短短2個月內收穫上萬冬粉,被冬粉稱為煉丹兄
3.3.2LightGBM
3.3.3CatBoost
3.4小結
第4章遺傳算法家族
4.1遺傳算法
4.1.1編碼
4.1.2初始化種群
4.1.3自然選擇
4.1.4交叉重組
4.1.5基因突變
4.1.6收斂
4.1.7遺傳算法總結
4.2蟻群算法
4.2.1螞蟻系統
4.2.2精英螞蟻系統
4.2.3最大最小螞蟻系統
4.2.4小結
第5章神經網路
5.1基本組成
5.1.1神經元
5.1.2層
5.2反向傳播
5.2.1複習
5.2.2鋪墊
5.2.3公式推導
5.3反向傳播神經網路
5.4卷積神經網路
5.4.1卷積運算
5.4.2卷積層
5.4.3池化層
5.5循環神經網路
5.5.1RNN用途
5.5.2RNN結構
5.5.3RNN的反向傳播——BPTT
5.6小結
第6章深度神經網路
6.1概述
6.2VGG網路
6.3GoogLeNet
6.3.1Inception v1
6.3.2Inception v2/v3
6.3.3Inception v4
6.3.4InceptionResnet
6.3.5GoogLeNet小結
6.4Resnet
6.5MobileNet
6.5.1CNN計算量如何計算
6.5.2深度可分離卷積
6.5.3ReLU6
6.5.4倒殘差
6.6EfficientNet
6.6.1模型的數學表達
6.6.2複合縮放
6.7風格遷移
6.7.1內容損失函式
6.7.2風格損失函式
6.7.3風格遷移的梯度下降
第7章循環神經網路
7.1長短期記憶網路
7.1.1LSTM結構
7.1.2LSTM出現原因
7.2GRU
7.3注意力機制
7.3.1編碼解碼框架
7.3.2Attention結構
第8章無監督學習
8.1什麼是無監督學習
8.2聚類算法
8.2.1Kmeans算法
8.2.2分級聚類
8.2.3具有噪聲的基於密度的聚類方法
8.3生成對抗網路
8.3.1通俗易懂的解釋
8.3.2原理推導
8.3.3損失函式的問題
8.3.4條件生成對抗網路
8.4自編碼器
8.4.1自編碼器概述
8.4.2去噪自編碼器
8.4.3變分自編碼器
第9章目標檢測
9.1目標檢測概述
9.1.1通俗理解
9.1.2鋪墊知識點
9.1.3發展史
9.2YOLO v1
9.2.1輸出
9.2.2網路
9.2.3輸入
9.2.4損失函式
9.2.5小結
9.3YOLO v2
9.3.1mAP
9.3.2改進
9.3.3整體流程
9.3.4小結
9.4YOLO v3
第10章強化學習
10.1鋪墊知識
10.1.1什麼是RL
10.1.2馬爾可夫決策過程
10.1.3回報Return
10.1.4價值函式
10.1.5貝爾曼方程
10.2DQN
10.2.1DQN損失函式
10.2.2DQN訓練技巧
10.2.3DDQN
10.2.4基於優先權的記憶回放
10.2.5Dueling DQN
10.3全面講解基礎知識
10.3.1策略梯度
10.3.2ActorCritic行動者評論家算法
10.3.3A2C與優勢函式
10.3.4Offpolicy
10.3.5連續動作空間
第11章GAN進階與變種
11.1基礎GAN存在的問題
11.2DCGAN
11.2.1反卷積(轉置卷積+微步卷積)
11.2.2空洞卷積
11.3WGAN
11.3.1GAN問題的再探討
11.3.2解決方案
11.4WGANGP
11.4.1WGAN的問題
11.4.2梯度懲罰
11.5VAEGAN
11.6CVAEGAN
第12章實戰1: 決策樹與隨機森林
12.1數據集介紹
12.1.1乳腺癌數據簡介
12.1.2任務介紹
12.2解決思路
12.2.1Pandas庫與Sklearn介紹
12.2.2探索數據
12.2.3決策樹模型
12.2.4隨機森林模型
12.3小結
第13章實戰2: MNIST手寫數字分類
13.1數據集介紹
13.1.1MNIST簡介
13.1.2任務介紹
13.2解決思路
13.2.1圖像處理
13.2.2構建模型的三要素
13.2.3訓練模型
13.2.4評估模型
13.3進一步改進finetune
13.4小結
第14章實戰3: GAN基礎之手寫數字對抗生成
14.1GAN任務描述
14.2GAN解決過程及講解
14.2.1數據準備
14.2.2模型搭建
14.2.3訓練過程(核心)
14.3GAN進化——CGAN
14.4小結
14.5問題發現
第15章實戰4: GAN進階與最佳化
15.1前情提要
15.2WGAN(2017)
15.3WGANGP(2017)
15.4DCGAN(2016)
15.5CVAEGAN
第16章實戰5: 風格遷移
16.1任務介紹
16.2解決思路
16.2.1載入模型
16.2.2載入圖片
16.2.3獲取特徵圖和Gram矩陣
16.2.4AI作畫
16.3小結
第17章實戰6: 目標檢測(YOLO)
17.1Darknet.py
17.1.1__init__(self)
17.1.2forward(self,x)
17.1.3小結
17.2Detect.py
第18章實戰7: 人臉檢測
18.1什麼是MTCNN
18.2MTCNN流程
18.2.1圖像金字塔
18.2.2PNet
18.2.3RNet
18.2.4ONet
18.3訓練過程
第19章實戰8: 自然語言處理
19.1正則表達式
19.2快速上手textblob
19.2.1極性分析和詞性標註
19.2.2詞幹提取和拼寫校正
19.2.3單詞字典
19.3基本概念
19.3.1樸素貝葉斯
19.3.2Ngram模型
19.3.3混淆矩陣
19.4基於樸素貝葉斯的垃圾郵件分類
19.5基於隨機森林的垃圾郵件分類
第20章Python與PyTorch相關
20.1PyTorch模型類
20.2PyTorch的data類
20.3激活函式
20.4損失函式
20.4.1均方誤差
20.4.2交叉熵
20.5model.train()與model.eval()
20.6Python的命令行庫argparse
第21章機器學習相關
21.1訓練集、測試集、驗證集
21.2epoch、batch、minibatch等
21.3規範化
21.3.1內部協變數偏移
21.3.2批規範化
21.3.3BN vs LN
21.4SGD與MBGD
21.5適應性矩估計
21.5.1Momentum
21.5.2AdaGrad
21.5.3RMSProp
21.5.4Adam算法小結
21.6正則化與範式
21.7標籤平滑正則化
21.8RBM與DBN
21.9圖片的RGB和HSV
21.10網中網結構
21.11K近鄰算法
21.12模擬退火算法
21.13流形學習
21.14端側神經網路GhostNet(2019)
21.14.1Ghost Module
21.14.2分組卷積
21.14.3SE Module
參考文獻

作者簡介

陳亦新 碩士,技術作家,涉及人工智慧、圖像處理和醫學等多個領域,是一名熱愛AI算法、立志AI落地造福社會的普通人。他因心思細膩、擅長換位思考、為人熱情,常常被評價為一名優秀的知識傳播者。他撰寫的技術公眾號“機器學習煉丹術”在短短2個月內收穫上萬冬粉,被冬粉稱為煉丹兄

相關詞條

熱門詞條

聯絡我們