沈樂成

沈樂成

沈樂成(Yuecheng Shen),男,中山大學電子與信息工程學院副教授、博士生導師。長期專注於光場調控技術,致力於解決光學散射造成的光學成像深度受限問題。擔任美國光學學會期刊《Optics Express》編委、《雷射與光電子學進展》青年編委、《紅外與雷射工程》特邀專欄編輯。在Nature Communications、Science Advances、Physical Review Letters和Optica等國際期刊發表SCI論文50餘篇,授權發明專利10餘項。在國內外學術會議做邀請報告10餘次,主持國家自然科學基金委、國防創新特區等項目。

基本介紹

  • 中文名:沈樂成
  • 畢業院校:華盛頓大學
  • 學位/學歷:博士
  • 職業:教師
  • 專業方向:電子工程
  • 職務:中山大學博士生導師
  • 職稱副教授
人物經歷,教育經歷,工作經歷,研究方向,科研項目,代表性論著,

人物經歷

教育經歷

2006年9月~2010年6月,中國科學技術大學套用物理學,理學學士
2010年8月~2015年5月,美國聖路易斯華盛頓大學,電子工程,工學博士
2015年6月~2017年1月,美國聖路易斯華盛頓大學,博士後
2017年2月~2018年3月,美國加州理工學院,博士後

工作經歷

於2018年10月全職加入中山大學電子與信息工程學院

研究方向

  • 光學工程
  • 光學成像
  • 光場調控

科研項目

[1] 國家自然科學基金重大研究計畫(新型光場調控物理及套用)培育項目,面向多光子成像的散射光時空聚焦調控基礎理論與關鍵技術研究。
[2] 國家自然科學基金青年項目,基於波前整形實現深層組織高解析度光聲顯微成像系統。
[3] 企業研發橫向課題,基於光場調控的血氧檢測儀器開發。
[4] 廣州市基礎研究計畫基礎與套用基礎研究項目,基於光場調控技術的散射光聚焦研究與套用。
[5] 光電材料與技術國家重點實驗室自主課題,寬光譜散射光調控與聚焦研究。
[6] 區域光纖通信網與新型光通信系統國家重點實驗室(上海交通大學)開放課題基金,面向多模光纖模式復用的光場調控技術研究。
[7] 信息光子學與光通信國家重點實驗室(北京郵電大學)開放課題基金,基於傳輸矩陣快速測量與光場調控的多模光纖模式復用技術研究。
[8] 安徽大學光電信息獲取與控制教育部重點實驗室開放基金,光學微腔中的暗態形成機理及感測研究。

代表性論著

* (共同)通訊作者, #(共同)第一作者 (按影響因子排序)
[1] D. Wu, J. Luo, G. Huang, Y. Feng, X. Feng, R. Zhang, Y. Shen*, and Z. Li*, “Imaging biological tissue with high-throughput single-pixel compressive holography”, Nature Communications 12, 4712 (2021).
[2] J. Luo, Y. Liu, D. Wu, X. Xu, L. Shao, Y. Feng, J. Pan, J. Zhao, Y. Shen*, Z. Li*, “High-speed single-exposure time-reversed ultrasonically-encoded optical focusing against dynamic scattering”, Science Advances , 8(50): eadd9158 (2022)
[3] X. Wei#, Y. Shen#, J.C. Jing#, A.S. Hemphill, C. Yang, S. Xu, Z. Yang*, and L.V. Wang*, “Real-time frequency-encoded spatiotemporal focusing through scattering media using a programmable 2D ultrafine optical frequency comb”, Science Advances 6: eaay1192 (2020).
[4] Y. Shen#, Y. Liu#, C. Ma, and L.V. Wang*, “Sub-Nyquist sampling boosts targeted light transport through opaque scattering media”, Optica , 4(1), 97-102 (2017).
[5] Y. Shen, M. Bradford, and J.T. Shen*, “Single-photon diode by exploiting the photon polarization in a waveguide”, Physical Review Letters , 107, 173902 (2011).
[6] D. Wu, J. Luo, Z. Liu, H. Liang, Y. Shen*, and Z. Li*, “Two-stage matrix-assisted glare suppression at a large scale”, Photonics Research 10(12), 2693-2701 (2022).
[7] Y. Huang*, Y. Shen*, and G. Veronis, “Topological edge states at singular points in non-Hermitian plasmonic systems”, Photonics Research 10(3), 745-757 (2022).
[8] G. Huang, D. Wu, J. Luo, L. Lu, F. Li, Y. Shen*, and Z. Li*, “Generalizing the Gerchberg–Saxton algorithm for retrieving complex optical transmission matrices”, Photonics Research 9(1), 34-42 (2021).
發表文章完整列表(按時間倒序排序)
[57] J. Luo, Y. Liu, D. Wu, X. Xu, L. Shao, Y. Feng, J. Pan, J. Zhao, Y. Shen*, Z. Li*, “High-speed single-exposure time-reversed ultrasonically-encoded optical focusing against dynamic scattering”, Science Advances 8(50): eadd9158 (2022)
[56] G. Lin, D. Wu, J. Luo, H. Liang, Z. Wei, Y. Xu, S. Liu, L. Shao*, and Y. Shen*, “Coaxial interferometry for camera-based ultrasound-modulated optical tomography with paired illumination” Optics Express 30(26), 46227-44235 (2022)
[55] Y. Huang*, Y. Shen*, and G. Veronis, “Switching between topological edge states in plasmonic systems using phase-change materials”, Optics Express 30(25), 44594-44603 (2022)
[54] D. Wu, J. Luo, Z. Liu, H. Liang, Y. Shen*, and Z. Li*, “Two-stage matrix-assisted glare suppression at a large scale”, Photonics Research 10(12), 2693-2701 (2022).
[53] S. Jiao*, J. Feng, L. Zhang, D. Wu, and Y. Shen, “Optical logic gate operations with single-pixel imaging”, IEEE Journal of Selected Topics in Quantum Electronics, 29(2) (2022).
[52] Z. Yu#, H. Li#, T. Zhong#, J. Park#, S. Cheng, C. Woo, Q. Zhao, J. Yao, Y. Zhou, X. Huang, W. Pang, H. Yoon, Y. Shen, H. Liu, Y. Zheng, Y. Park*, L. V. Wang*, and P. Lai*, “Wavefront shaping: A versatile tool to conquer multiple scattering in multidisciplinary fields”, The Innovation 3(5): 100292 (2022)
[51] Y. Huang*, Y. Shen*, and G. Veronis, “Topological edge states at singular points in non-Hermitian plasmonic systems”, Photonics Research 10(3), 745-757 (2022).
[50] Z Wang#, D. Wu#, G. Huang, J. Luo, B. Ye, Z. Li, and Y. Shen*, “Feedback-assisted transmission matrix measurement of a multimode fiber in a referenceless system”, Optics Letters 46(22), 5542-5545 (2021).
[49] J. Wang, H. Liang, J. Luo, B. Ye, and Y. Shen*, “Modeling of iterative time-reversed ultrasonically encoded optical focusing in a reflection mode”, Optics Express 29(19), 30961-30977 (2021).
[48] D. Wu, J. Luo, G. Huang, Y. Feng, X. Feng, R. Zhang, Y. Shen*, and Z. Li*, “Imaging biological tissue with high-throughput single-pixel compressive holography”, Nature Communications 12, 4712 (2021).
[47] R. Zhang#, J. Du#, Y. He, D. Yuan, J. Luo, D. Wu, B. Ye, Z.C. Luo*, and Y. Shen*, “Characterization of the spectral memory effect of scattering media”, Optics Express 29(17), 26944-26954 (2021).
[46] D. Yuan#, J. Luo#, D. Wu, R. Zhang, P. Lai*, Z. Li, and Y. Shen*, “Single-shot ultrasound-modulated optical tomography with enhanced speckle contrast”, Optics Letters 46(13), 3095-3098 (2021).
[45] Y. He#, D. Wu#, R. Zhang, Z. Cao, Y. Huang*, and Y. Shen*, “Genetic-algorithm-assisted coherent enhancement absorption in scattering media by exploiting transmission and reflection matrices”, Optics Express 29(13), 20353-20369 (2021).
[44] Y. Shen*, Z. Hu, D. Wu, C. Ma, and Y. Liu*, “An open-source, accurate, and iterative calibration method for liquid-crystal-based spatial light modulators”, Optics Communications 495, 127108 (2021).
[43] Y. Zhao, D. Zhu, Y. Tu, L. Pi, H. Li, L. Xu, Z. Hu, Y. Shen, B. Yu, and L. Lu*, “Coherent laser detection of the femtowatt-level frequency-shifted optical feedback based on a DFB fiber laser”, Optics Letters 46(6), 1229-1232 (2021).
[42] Y. Huang*, L. Wang, Y. Shen*, and G. Veronis, “Switching between singular points in non-PT-symmetric multilayer structures using phase-change materials”, Optics Express 29(1), 454-469 (2021).
[41] G. Huang, D. Wu, J. Luo, L. Lu, F. Li, Y. Shen*, and Z. Li*, “Generalizing the Gerchberg–Saxton algorithm for retrieving complex optical transmission matrices”, Photonics Research 9(1), 34-42 (2021).
[40] X. Wei, J.C. Jing, Y. Shen, and L.V. Wang*, “Harnessing a multi-dimensional fibre laser using genetic wavefront shaping”, Light: Science & Application 9:149 (2020).
[39] D. Wu#, L. Qin#, J. Luo, X. Chen, H. Chui*, and Y. Shen*, “Delivering targeted color light through a multimode fiber by field synthesis”, Optics Express 28(13), 19700-19710 (2020).
[38] G. Huang, D. Wu, J. Luo, Y. Huang*, and Y. Shen*, “Retrieving the optical transmission matrix of a multimode fiber using the extended Kalman filter”, Optics Express 28(7), 9487-9500 (2020).
[37] X. Wei#, Y. Shen#, J.C. Jing#, A.S. Hemphill, C. Yang, S. Xu, Z. Yang*, and L.V. Wang*, “Real-time frequency-encoded spatiotemporal focusing through scattering media using a programmable 2D ultrafine optical frequency comb”, Science Advances 6: eaay1192 (2020).
[36] R. Cui, D. Tan*, and Y. Shen*, “Statistically driven model for efficient analysis of few-photon transport in waveguide quantum electrodynamics”, Journal of the Optical Society of America B, 37(2), 420-424 (2020).
[35] J. Yang#, L. Li#, A. A. Shemetov#, S. Lee, Y. Zhao, Y. Liu, Y. Shen, J. Li, Y. Oka, V. V. Verkhusha*, and L. V. Wang*, “Focusing light inside live tissue using reversibly switchable bacterial phytochrome as a genetically encoded photochromic guide star”, Science Advances 5: eeay1211 (2019).
[34] Y. Huang*, Y. Shen*, and G. Veronis, “Non-PT-symmetric two-layer cylindrical waveguide for exceptional-point-enhanced optical devices”, Optics Express 27(26), 37494-37507 (2019).
[33] J. Luo#, Z. Wu#, D. Wu, Z. Liu, X. Wei, Y. Shen*, and Z. Li*, “Efficient glare suppression with Hadamard-encoding-algorithm-based wavefront shaping”, Optics Letters 44(16), 4067-4070 (2019).
[32] D. Wu, J. Luo, Z. Li, and Y. Shen*, “A thorough study on genetic algorithms in feedback-based wavefront shaping”, Journal of Innovative Optical Health Sciences, 1942004 (2019).
[31] Z. Zhen, Y. Huang*, Y. Feng, Y. Shen*, and Z. Li*, “An ultranarrwo photonic nanojet formed by an engineered two-layer microcylinder of high refractive-index materials”, Optics Express 27(6), 9178-9188 (2019).
[30] Z. Wu, J. Luo, Y. Feng*, X. Guo, Y. Shen*, and Z. Li*, “Controlling 1550-nm light through a multimode fiber using a Hadamard encoding algorithm”, Optics Express 27(4), 5570-5580 (2019).
[29] Y. Huang*, Z. Zhen, Y. Shen*, C. Min, and G. Veronis, “Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm”, Optics Express 27(2), 1310-1325 (2019).
[28] L .Song, Y. Feng*, X. Guo, Y. Shen, D. Wu, Z. Wu, C. Zhou, L. Zhu, S. Gao, W. Liu, X. Zhang*, and Z. Li*, “Ultrafast polarization bio-imaging based on coherent detection and time-stretch techniques”, Biomedical Optics Express, 9(12), 6556-6568 (2018).
[27] J. Yang, L. Gong, Y. Shen, and L.V. Wang*, “Synthetic Bessel light needle for extended depth-of-field microscopy”, Applied Physics Letters, 113(18), 181104 (2018).
[26] A. Hemphill, Y. Shen, J. Hwang*, and L.V. Wang*, “High-speed alignment optimization of digital optical phase conjugation systems based on auto-covariance analysis in conjunction with orthonormal rectangular polynomials”, Journal of Biomedical Optics, 24(3), 1-11 (2018).
[25] Y. Huang*, Y. Shen, C. Min, and G. Veronis, “Switching photonic nanostructures between cloaking and superscattering regimes structures using phase-change materials”, Optical Materials Express, 8(6), 1672 (2018).
[24] Y. Qu#, L. Li#, Y. Shen, X. Wei, T.T.W. Wong, P. Hu, J. Yao, K. Maslov, and L.V. Wang*, “Dichroism-sensitive photoacoustic computed tomography”, Optica, 5(4), 495-501 (2018).
[23] Y. Shen#, Z. Chen#, Y. He, Z. Li*, and J.T. Shen*, “Exact approach for spatiotemporal dynamics of spontaneous emissions in waveguide quantum electrodynamic systems”, Journal of the Optical Society of America B, 35, 607 (2018).
[22] Y. Liu#, Y. Shen#, H. Ruan, F.L. Brodie, T.T.W. Wong, C. Yang, and L.V. Wang*, “Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses”, Journal of Biomedical Optics, 23(1), 010501 (2018).
[21] A. Hemphill, Y. Shen, Y. Liu, and L.V. Wang*, “High-speed single-shot optical focusing through dynamic turbid media using off-axis holography”, Applied Physics Letters, 111(22), 221109 (2017).
[20] J. Yang#, Y. Shen#, Y. Liu, A. Hemphill, and L.V. Wang*, “Focusing light through scattering media by polarization modulation based generalized digital optical phase conjugation”, Applied Physics Letters, 111(20), 201108 (2017).
[19] Y. Huang*, Y. Shen, C. Min, and G. Veronis, “Switching of the direction of reflectionless light propagation at exceptional points in non-PT-symmetric structures using phase-change materials”, Optics Express, 25(22), 27283-27297 (2017).
[18] J. Yang, L. Gong, X. Xu, P. Hai, Y. Shen, Y. Sukuzi, and L.V. Wang*, “Motionless volumetric photoacoustic microscopy with spatially invariant resolution”, Nature communications, 8, 780 (2017).
[17] Y. He, Y. Shen, X. Feng, C. Liu*, and L.V. Wang*, “Homogenizing microwave illumination in thermoacoustic tomography by a linear-to-circular polarizer based on frequency selective surface”, Applied Physics Letters, 111(6), 063703 (2017).
[16] L. Li, L. Zhu, Y. Shen, and L.V. Wang*, “Multi-view Hilbert transformation in full-ring-transducer-array based photoacoustic computed tomography”, Journal of Biomedical Optics, 22(7), 076017 (2017).
[15] Y. Huang, Y. Shen, C. Min, S. Fan, and G. Veronis*, “Unidirectional reflectionless light propagation at exceptional points”, Nanophotonics, 6(5), 977-996 (2017).
[14] Y. Liu, C. Ma, Y. Shen, J. Shi, and L.V. Wang*, “Focusing light inside dynamic scattering tissue with millisecond digital optical phase conjugation”, Optica, 4(2), 280-288 (2017).
[13] Y. He, Y. Shen, C. Liu*, and L.V. Wang*, “Suppressing excitation effects in microwave induced thermoacoustic tomography by multi-view Hilbert transformation”, Applied Physics Letters, 110(5), 053701 (2017).
[12] Y. Shen#, Y. Liu#, C. Ma, and L.V. Wang*, “Sub-Nyquist sampling boosts targeted light transport through opaque scattering media”, Optica, 4(1), 97-102 (2017).
[11] Y. Liu, Y. Shen, C. Ma, J. Shi, and L.V. Wang*, “Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering media”, Applied Physics Letters, 108(23), 231106 (2016).
[10] Y. Shen#, Y. Liu#, C. Ma, and L.V. Wang*, “Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation”, Journal of Biomedical Optics, 21(8), 085001 (2016).
[9] Y. Liu, C. Ma, Y. Shen, and L.V. Wang*, “Bit-efficient, sub-millisecond wavefront measurement using a lock-in camera for time-reversal based optical focusing inside scattering media”, Optics Letters, 41(7), 1321-1324 (2016).
[8] Y. Shen#, Y. Liu#, C. Ma, and L.V. Wang*, “Focusing light through scattering media by full-polarization digital optical phase conjugation”, Optics Letters, 41(6), 1130-1133 (2016).
[7] Y. Shen and J.T. Shen*, “Photonic Fock states scattering in waveguide QED and their correlation functions”, Physical Review A, 92, 033803 (2015). [6] Y. Shen, L.V. Wang, and J.T. Shen*, “Ultralong photonic nanojet formed by a two-layer dielectric microsphere”, Optics Letters, 39(14), 4120-4123 (2014).
[5] Y. Shen*, L.V. Wang, and J.T. Shen*, “Deep subwavelength optical imaging using correlated nano-torches”, Applied Physics Letters, 103(20), 201119 (2013).
[4] Y. Shen and J.T. Shen*, “Numerical investigation of Rayleigh nanoparticle sensing using a whispering-gallery-mode resonator”, Journal of the Optical Society of America B, 29(10), 2897-2900 (2012).
[3] Y. Shen, D.R. Chen, and J.T. Shen*, “Statistical theory of nanoparticle sensing using a whispering-gallery-mode resonator”, Physical Review A, 85, 063808 (2012).
[2] Y. Shen and J.T. Shen*, “Nanoparticle sensing using whispering-gallery-mode resonators: Plasmonic and Rayleigh scatterers”, Physical Review A, 85, 013801, (2012).
[1] Y. Shen, M. Bradford, and J.T. Shen*, “Single-photon diode by exploiting the photon polarization in a waveguide”, Physical Review Letters, 107, 173902 (2011).

相關詞條

熱門詞條

聯絡我們