橢圓拋物面是指在同一頂點互相垂直的2個平面的交線上的二條拋物線,其中一條拋物線一邊頂點在別的拋物線上,一邊平面平行地移動時形成的曲面。
基本介紹
- 中文名:橢圓拋物面
- 外文名:Elliptical Paraboloid
- 形成:拋物線旋轉
- 對稱性:關於z軸對稱
- 套用領域:空間解析幾何
- 套用學科:數學
標準方程,性質,
標準方程
在直角坐標系下,由方程
所表示的曲面叫做橢圓拋物面,方程叫做橢圓拋物面的標準方程,其中a,b是任意的正常數。
由曲面的對稱性可知,橢圓拋物面關於yOz面和zOx面對稱,關於z軸也對稱。
由橢圓拋物線方程可知z ≥0,因此該橢圓拋物面位於xOy面的上方。它與zOx面和yOz面的交線都是拋物線。
性質
(2)曲面與坐標軸的交點:橢圓拋物面通過坐標原點,且除原點外,曲面與三坐標軸沒有別的交點。
(3)曲面的存在範圍:橢圓拋物面全部在髫|9y坐標面的一側,即在z ≥0的一側。
(4)被坐標面截得的曲線:用坐標面y=0,x=0截割曲面,分別得拋物線
這兩個拋物線叫做橢圓拋物面的主拋物線。它們有著相同的頂點和相同的對稱軸,即x軸。開口都向z軸正方形。