核晶作用

核晶作用

核晶作用就是銀河系的一部分,距銀心2.5萬光年,在獵戶旋臂附近,太陽帶領她的大家族以250公里/秒的速度繞銀河中心旋轉,周期約2億年,50億年之前若干億年太陽系原始星雲就在這個位置上。

基本介紹

  • 中文名:核晶作用
  • 屬於銀河系的一部分
  • 距銀心:2.5萬光年
  • 位置:獵戶旋臂附近
簡介,相關資料,

簡介

她是巨大的銀河系原始氣體雲團(即星際雲)冷縮斷裂後分離出來的一小塊星雲,有初始速度和一定溫度(不是高溫),星雲直徑約3000天文單位,其實星雲沒有明顯的邊界,是個瀰漫的氫氣團,密度很低,約10_17克/厘米3,星雲質量是太陽質量的1.5-2倍,溫度在300K以下,有自轉,但很慢,幾乎和公轉同步,星雲主要成分是氫,占71%,其次是氦占27%,其它各種元素占2%,這裡面包括從超新星爆發飛來的重元素和金屬物質,還有揮發性物質和塵埃等。太陽系原始星雲繞銀河系中心運轉,一開始就有角動量,在冷凝收縮過程中自轉加快,就使自轉不再與公轉同步,又由於星雲內側和外側到銀心距離不等,在繞銀心克卜勒運動時形成速度梯度,里快外慢,出現較差轉動,星雲在銀心的潮汐力作用下發生湍動,並形成大大小小的渦流,各個渦流之間相互碰撞和兼併,又形成大的渦旋,最後形成一個更大的中心旋渦,由於星雲繼續緩慢的冷凝收縮,旋渦自轉速度逐漸加快,大量物質開始向旋渦中心匯聚,致使中心區物質密度增大,引力增強,形成中心引力區,於是物質又在引力作用下加快向中心旋落,星雲的冷凝收縮逐漸被引力收縮所代替,這時星雲已由原來的3000天文單位縮至70天文單位,大約經過幾十億年的時間,其間星雲體溫度下降到幾十K,物質損失較大,部分物質散逸到宇宙空間。
隨著星雲中心引力區的增強,加快了物質向中心旋落,形成了星雲坍縮,進入快引力收縮過程。在星雲內部物質從四面八方沿著渦旋方向迅速向中心下落,形成粗細不同的螺旋線式的物質流,星雲也逐漸拉向扁平,形成闊邊帽式的園盤,螺線狀的物質流逐漸演變成四條旋臂,只要角動量不足就不會形成圓環,只能形成旋臂。從正面看猶如縮小的銀河系,成旋渦結構,從側面看類似NGC4594天體(M104),在平行總角動量軸的方向上收縮不受限制,坍縮迅速,增加的引力勢能轉變為物質的內能,而在赤道平面上收縮受到限制,這是因為受到離心加速度的作用削弱了引力,使收縮緩慢,才形成中央凸起四周扁平的帶有旋臂的園盤,從總體看星雲仍在繼續收縮,角動量仍然向旋臂和中心區轉移,當內旋臂收縮到距中心5.2天文單位時,轉速逐漸達到13.1公里/秒,自轉產生的離心力和中心區的引力相平衡,旋臂就停留在這一位置而不再收縮,但中心區的物質繼續快速收縮,中心區與旋臂發生斷裂,中心區繼續收縮形成原太陽,占星雲總質量的99.8%,而四條旋臂的質量還不到0.2%,此時原太陽對旋臂仍有很強的引力作用,同樣旋臂也對原太陽有牽製作用,原太陽的自轉受到滯後作用,轉速漸漸減慢下來,把原太陽的角動量又轉移到旋臂上,這時旋臂上物質只要角動量不足還會繼續向中心旋落,但到達內旋臂處就不能再落下去了,因此內旋臂物質積累越來越多,而外旋臂物質相對減少了。當四條旋臂逐個達到克卜勒軌道速度就演變成四道園環,園環位置按提丟斯—彼得定則分布,分別在木、土、天、海軌道位置上,它們的角動量占星雲總角動量的99.5%,這就是太陽系角動量分布奇特的原因。以此種方式形成的拉普拉斯環不存在所需角動量不足的困難。
中心區坍縮成原太陽,物質密度增大,分子間相互碰撞頻繁,產生的內部壓強逐漸增大,使核心處物質擠壓在一起形成星核,並釋放大量能量,中心溫度升高,增加的熱能通過對流方式向外傳播,星體呈現微微放熱狀態,整個星雲體類似獵戶座KL紅外源區一樣的天體。星雲時期的快引力收縮過程歷時很短,大約幾千年,我們常說太陽有50億年的歷史,大概就從這時算起吧。
2.變星時期(包括慢引力收縮過程和耀變過程)
星雲形成四道園環後,絕大部分質量都集中在中心區百分之一天文單位範圍內,物質密度大增,分子間相互碰撞更加頻繁,溫度升高,壓強增大。當內部輻射壓和自吸引力接近相等時出現準流體平衡,星體不再收縮或者僅有微小脈動收縮,太陽的雛型基本形成,中心是快速旋轉的堅實星核,核外是輻射區,再往外到表面是對流層,原太陽逐漸轉入慢引力收縮過程。
原太陽內部物質運動非常複雜,因物質是氣態流體,與剛體大不一樣,在自轉中出現了許多複雜的運動狀態,因慣性離心力的作用赤道物質有拉向扁平的趨勢,兩極處物質必向赤道方向流動,極處物質減少了,但引力的作用是維持球形水準面,所以也必有物質向兩極處流去,以補充那裡的物質不足,於是在赤道兩側形成旋轉方向不同的渦流,並隨物質流動漸漸靠近赤道,這就是有名的蝴蝶圖,這種狀態直保持到人類的工業社會時期,如太陽黑子運動。隨物質對流和自轉相互作用,角動量向赤道轉移,從而形成星體的較差自轉。核心處高密高壓和高溫不斷增加,擾亂了熱平衡梯度,通過混合長把動能和熱量向外傳輸,溫度較低的物質向下沉,形成對流,並發展為從內到外的湍流。當中心溫度上升到2000K時,氫不能保持分子狀態,而變成原子,並吸收大量熱能,促使壓力驟降,抵不住引力,中心區崩陷為體積更小密度更大的核心,並產生強烈的射電輻射,這些能量輻射可從星體稀薄處穿過而到達星體表面,因而可形成一些亮條,這就是H-H式天體。
星體內部不僅有高速運動分子產生的熱能,還有原子級釋放的電磁能,核心溫度更高,星體自轉雖然減慢下來,但星核還是快速自旋,核區附近的電漿也隨之快速旋轉,星體磁場產生了,磁力線從兩極附近穿出,星體這時產生了射電輻射,而內部熱能不斷傳送到表面,表面溫度可達1000K,並放射紅光,這種能量傳遞時起時伏,表面溫度也就忽高忽低,表現的星等就是忽大忽小的變化。有時能量積累到一定程度還會發生猛烈地噴發,拋出物質,在幾天之內星等可上升5、6個等級,這個時期相當於金牛T型變星期或者類似鯨魚座UV型耀星期,即為耀變過程。
原太陽中心區的溫度逐漸升高,當達到80萬K時,氫被點燃發生核聚變,首先是氫和氘聚變為一個氦核,產生光子並釋放大量核能,突然猛增千百倍能量,必將產生猛烈地噴發,星體亮度也就突然增亮好多倍,這就是耀星或新星爆發,原太陽進入耀變過程,在這期間內發生過多次猛烈地噴發,釋放大量能量和拋射物質,並帶走一部分角動量,比較大的噴發有四次。因太陽質量不算太大,就沒有更大的全面爆發,僅僅是局部噴發而已。
噴發是從星體內部核反應區開始的,那裡的星核自轉非常快,可達每秒數百公里。物質具有極高的能量,因此噴出物高溫高速,第一次噴出物的質量約是太陽質量的百萬分之三,溫度一萬多度,噴出速度高達每秒616.5公里,呈熔融半流體狀態,高速自旋,在飛離原太陽過程中邊降溫邊減速,當它到達金星軌道處速度剛好與克卜勒軌道速度同步,便留在軌道上繞原太陽運轉。僅過幾十年,原太陽又發生第二次噴發,噴出物比前次略多些,仍是高溫熔融狀態,高速自旋,初速度比前次略大,當它進入到現今的地球軌道處便繞原太陽運行。又過數百年,原太陽又發生第三次噴發,這時的星核溫度進一步增高,達300萬度,發生氘、鋰、鈹、硼等核反應,釋放能量更大,噴出物質沒有前兩次多,但初速度卻大些,其中最大的一個團塊進入到現今的火星軌道上,更多的碎塊遍布在木星和火星軌道之間,經過三次噴發,原太陽處於暫時休頓狀態,持續幾千年,但星體中心溫度仍在繼續升高,當達到700萬度時發生四氫聚變氦的質子-質子反應,釋放大量光子和能量,原太陽發生第四次猛烈噴發,這次噴發物是太陽質量的千萬分之二,初速度比前三次都大,因此飛出更遠,其中一塊較大的噴出物撞擊在天王星邊緣,濺起的物質碎塊抵達海王星軌道處,更多的碎塊遍布太陽系空間,有的飛出海王星的外側。這時原太陽表面溫度上升到數千度,放熱發光。一個光芒四射的恆星即將誕生。原太陽在變星時期大約有4億年。
3.主序星時期(包括氫燃燒過程和未發生的氦燃燒過程)
原太陽經過幾次耀變逐漸趨於穩定狀態,進入氫燃燒過程,釋放核能,星核中心核反應區溫度可達1500萬度,核反應出現碳氮循環反應,但大量的還是質子-質子反應,核中心密度達160克/厘米3,中心壓力3.4×1016帕,抵住星體的引力收縮,達到新的熱平衡梯度,不再發生噴發現象,進入相對穩定期。這時星體表面溫度達5770 K,成為G型星,太陽輻射主要是電磁輻射帶電粒子流,外層大氣不斷發射的穩定粒子流-即太陽風,驅散星周物質,使太陽更加明朗了,成為一顆年輕的主序星。太陽在主序星期已有46億年了。太陽活動仍在繼續中,表現為11年一個周期,說明太陽還在繼續演化中。當太陽中心溫度達到1億度,氦核聚變為碳核和氧核反應,進入氦燃燒過程。
4.類木行星和規則衛星的形成

相關資料

氫核聚變反應主要在恆星的中心部分進行。隨著時間的推移,靠近中心部分的氫逐漸耗盡而形成為“氦核”,氫聚變的熱核反應就無法在中心區繼續。當氦核的質量達到恆星質量的10-15%時,這時引力重壓因沒有輻射壓來平衡而占了上風,星體中心區就被壓縮,使溫度急劇上升。中心氦核的溫度升高后,使緊貼“氦核”周圍尚未燃燒的氫氦混合氣體受熱,又使氦核外的氫進一步點燃。這樣的效果就使得氦球逐漸增大,氫燃燒層也跟著向外擴展,從而使星體外層物質受熱膨脹起來變為紅巨星。
如果恆星的質量足夠大,在上述過程中氦核中心的溫度將可能達到1億度,此時,其核心就點燃了3個氦原子核聚合為1個碳原子核的核聚變,並放出比氫核聚變更為巨大的能量。這時的恆星,因同時發生著兩種核反應,放出的能量更大,暴漲的能量使星體內部的輻射壓大於引力收縮壓,從而引起星體更為劇烈的膨脹,形更大的紅巨星或紅超巨星轉化。一般來說,質量高於4倍太陽質量的大恆星,在氦核外重新引發氫聚變時,核外放出來的能量未明顯增加,但半徑卻增大了好多倍,因此表面溫度由幾萬K降到3-4千K,成為紅超巨星。質量低於4倍太陽質量的中小恆星,將變為紅巨星,此時其表面溫度下降,光度卻急劇增加,這是因為它們外層膨脹所耗費的能量較少而產能較多。
太陽大約在40-50億年後就會變成一顆紅巨星,它可能要膨脹到地球軌道以外的地方,水星、金星和地球都將被它吞併或汽化,人類居住的搖籃將不復存在。預計我們的太陽在紅巨星階段將大約停留近10億年時間。
紅巨星的體積比原來要大一百多倍。體積的膨脹導致其表面溫度下降,但由於發光表面積同時劇增,其總能量輸出和光亮度仍然是大幅增大的。當我們的太陽處在這一階段時,它的能量輸出將增強一千倍

相關詞條

熱門詞條

聯絡我們