智慧型增長

《智慧型增長》是人民郵電出版社出版的一本圖書。

基本介紹

  • 中文名:智慧型增長
  • 出版社:人民郵電出版社
圖書簡介,內容簡介,圖書目錄,

圖書簡介

《智慧型增長》是人民郵電出版社出版的一本圖書。

內容簡介

《智慧型增長》共分 5 部分 :數據篇從智慧型驅動增長方案的基礎出發,沿著實際工作鏈條,介紹數 據收集、加工、存儲和訪問 ;模型篇銜接基礎數據到上層套用,全面介紹數據建模,包括生命 周期、RFM、AARRR 和地理信息模型 ;場景篇真正介紹智慧型增長怎么做,這裡以完整的商業 運營鏈條為例拆解 9 大運營場景,從業務、財務和技術的角度詳述增長實踐 ;團隊篇解釋了數 據驅動增長在人物層面需要具備的必要因素 ;結語篇探討了智慧型增長對經濟的促進作用和作用方式。

圖書目錄

第 一部分 數據篇
第 1章 數據收集 2
1.1 行為數據 3
1.1.1 傳統獲取方式 4
1.1.2 獲取方式對比 5
1.1.3 無需埋點的數據收集 5
1.1.4 用戶行為數據類型 7
1.2 交易數據 9
1.2.1 收集交易過程數據 9
1.2.2 收集交易累積數據 11
1.2.3 區分交易金額的組成 12
1.2.4 收集廣告點擊數據 13
1.3 標籤數據 14
1.3.1 發現身份屬性標籤 15
1.3.2 在基礎標籤上加工 15
1.3.3 從交易行為提取標籤 16
1.3.4 從數據挖掘建模輸出 標籤 16
第 2章 數據加工 18
2.1 標準與格式 19
2.1.1 基本概念 19
2.1.2 無量綱化處理 20
2.1.3 多源數據融合 21
2.2 關聯分析 23
2.2.1 概念 23
2.2.2 Apriori算法 24
2.2.3 套用關聯分析 25
2.3 數據清洗 28
2.3.1 填補缺失值 28
2.3.2 數據平滑 30
2.3.3 數據造假 31
2.3.4 監測噪聲數據 33
第3章 數據存儲 35
3.1 分層與粒度 35
3.1.1 粒度劃分標準 36
3.1.2 分層實現方法 37
3.1.3 智慧型增長的新視角 39
3.2 更新與時效 40
3.2.1 記錄實時數據 40
3.2.2 數據更新與同步 41
3.2.3 時效性 42
3.3 搭建存儲方案 43
3.3.1 HDFS資料庫 43
3.3.2 NoSQL資料庫 44
3.3.3 開發自有方案 46
第4章 數據訪問 48
4.1 訪問工具:正排與倒排 48
4.1.1 正排索引 48
4.1.2 倒排索引 52
4.2 衡量方法:查準與查全 54
4.2.1 定義 54
4.2.2 正排查全 55
4.2.3 正排查準 55
4.2.4 倒排查全 56
4.2.5 倒排查準 56
4.3 最佳化:性能與效率 57
4.3.1 資料庫設計 57
4.3.2 SQL語句設計 59
第 二部分 模型篇
第5章 生命周期模型 62
5.1 用戶生命周期 62
5.1.1 劃分標準 63
5.1.2 用戶生命價值 64
5.1.3 生命周期運營 65
5.2 商戶生命周期 67
5.2.1 劃分標準 67
5.2.2 商戶生命價值 69
5.2.3 生命周期運營 69
5.3 小結 71
第6章 RFM模型 73
6.1 定義 73
6.2 適用場景 75
6.2.1 客戶管理 75
6.2.2 電商運營 76
6.2.3 服務升級 77
6.3 演變方向 78
6.3.1 多級指標細分 78
6.3.2 算法降維 79
第7章 AARRR模型 81
7.1 定義 81
7.2 適用場景和指標 82
7.2.1 下載量和激活量 83
7.2.2 用戶獲取成本 84
7.2.3 用戶活躍度 84
7.2.4 用戶留存率 85
7.2.5 用戶平均收入 86
7.2.6 用戶回報率 87
7.2.7 用戶影響因子 88
7.3 小結 88
第8章 地理信息模型 90
8.1 意義 90
8.2 基礎技術 91
8.2.1 地理坐標 92
8.2.2 地圖定位 94
8.2.3 地圖導航 94
8.3 適用場景 95
8.3.1 地址信息解析 96
8.3.2 基礎位置描述 97
8.3.3 周邊POI檢索 98
8.3.4 高精度定位服務 99
8.3.5 個性化感知 100
8.4 演變方向 101
8.4.1 室內定位精準度 101
8.4.2 POI位置語義化 102
第三部分 場景篇
第9章 如何持續獲得新用戶 104
9.1 意義 104
9.2 從0到10 000,圈定種子用戶 105
9.2.1 採用邀請機制 106
9.2.2 引起社區關注 106
9.3 從10 000到1000萬,構建增長 機制 107
9.3.1 競爭群體增長 107
9.3.2 延伸品類增長 108
9.3.3 相近地址增長 109
9.3.4 社交關係增長 110
9.4 評估與反饋 111
9.4.1 降低競品用戶的獲取 成本 112
9.4.2 提高附近用戶的激活 比例 112
9.4.3 提高延伸用戶的活躍 程度 113
9.4.4 提高社交用戶的影響 能力 114
9.4.5 拉新效果評估矩陣 114
9.5 小結 115
第 10章 誰是你的明星商戶 116
10.1 意義 116
10.2 拓荒階段 117
10.2.1 動銷率與展現率 118
10.2.2 吸引能力:平衡動銷 和展現 118
10.3 發展階段 119
10.3.1 新客導流數量與質量 119
10.3.2 導流能力:平衡數量 與質量 120
10.4 相持階段 120
10.4.1 客單價與客單量 121
10.4.2 擴張能力:平衡單價 與單量 121
10.5 穩定階段 122
10.5.1 ****率與營業利 潤率 122
10.5.2 盈利能力:跨越盈虧 平衡線 123
10.6 小結 124
第 11章 何日君再來 125
11.1 背景 125
11.2 留存分析工具 127
11.2.1 目標用戶定格測算 分析 127
11.2.2 選定用戶時序演化 分析 129
11.3 挽回流失用戶 131
11.3.1 流失的定義和分類 131
11.3.2 流失率預測模型 132
11.3.3 干預流失過程 133
11.3.4 流失用戶激活效應 133
11.4 小結 134
第 12章 差異化定價 136
12.1 意義 136
12.2 根據服務區分定價 138
12.2.1 一服務一價 138
12.2.2 創造差異服務 139
12.3 根據用戶區分定價 140
12.3.1 看到不同價格 140
12.3.2 派發不同紅包 140
12.4 根據時間區分定價 141
12.4.1 潮汐規律 141
12.4.2 峰值效應 142
12.5 小結 144
第 13章 縮短用戶決策路徑 145
13.1 決策路徑上的技術鏈條 146
13.2 搜尋技術 147
13.2.1 查詢詞分析 147
13.2.2 查詢詞變換 149
13.2.3 檢索結果擴展 150
13.3 排序技術 151
13.3.1 社交類 151
13.3.2 消費類 152
13.4 推薦技術 152
13.4.1 技術選型 153
13.4.2 技術挑戰 157
13.5 小結 160
第 14章 營造虛擬經濟循環 161
14.1 背景 161
14.2 虛擬商品定價 163
14.2.1 信用積分體系 163
14.2.2 道具交易體系 164
14.3 虛擬管理激勵 165
14.3.1 調節服務難度 166
14.3.2 調節服務質量 167
14.4 虛擬資源競價 169
14.4.1 發現虛擬資源 169
14.4.2 找到競價者 170
14.4.3 估算競爭價格 171
14.5 小結 171
第 15章 擠出繁榮里的泡沫 173
15.1 什麼是刷單 174
15.1.1 刷單形態 174
15.1.2 作弊手段 175
15.2 加強數據校驗 177
15.2.1 *一性驗證 177
15.2.2 常駐點驗證 178
15.2.3 硬體驗證 179
15.3 發現數據異常 180
15.3.1 短期頻繁行為 180
15.3.2 批量雷同行為 181
15.3.3 抱團趨同 182
15.4 制止作弊行為 182
15.4.1 規則系統 182
15.4.2 機器建模 183
15.4.3 避免誤傷 184
15.5 小結 184
第 16章 為商戶賦能 186
16.1 選地址 187
16.1.1 找到旺鋪位置 187
16.1.2 劃定服務範圍 188
16.2 選商品 189
16.2.1 知己知彼找爆品 189
16.2.2 商品的生命周期 190
16.3 選客群 190
16.3.1 定製目標用戶 190
16.3.2 提高攬客質量 191
16.3.3 降低攬客成本 192
16.4 小結 192
第 17章 調度一盤棋 194
17.1 調度模式分類 195
17.1.1 單地串列調度 196
17.1.2 單地並行調度 196
17.1.3 雙地並行調度 197
17.2 物流調度決策 198
17.2.1 多目標最佳化 199
17.2.2 分層建模降維 200
17.2.3 雲端虛擬調度 201
17.2.4 配送耗時預估 202
17.2.5 可視化平台 203
17.3 運力供需分配 204
17.3.1 需求預測與跨時空 調配 205
17.3.2 **條件運力預警 分配 205
17.4 小結 206
第四部分 團隊篇
第 18章 榜樣的力量 208
18.1 Facebook增長團隊 209
18.1.1 組織構成 209
18.1.2 主要經驗 210
18.2 美團大數據團隊 210
18.2.1 組織構成 210
18.2.2 主要經驗 211
18.3 騰訊大數據團隊 212
18.3.1 組織構成 212
18.3.2 主要經驗 212
18.4 GrowingIO大數據團隊 213
18.4.1 組織構成 213
18.4.2 主要經驗 214
18.5 京東大數據團隊 214
18.5.1 組織構成 215
18.5.2 主要經驗 215
18.6 阿里巴巴數據平台事業部 216
18.6.1 組織構成 216
18.6.2 主要經驗 217
第 19章 組建增長團隊 218
19.1 增長團隊組織架構 218
19.1.1 增長團隊內部成員 218
19.1.2 增長團隊相關角色 220
19.1.3 團隊合作方式 223
19.2 發揮數據科學家的作用 224
19.2.1 數據科學家做什麼 225
19.2.2 數據科學家怎么做 226
19.3 常見陷阱與經驗 227
19.3.1 避免大數據浮腫 227
19.3.2 溝通部門間障礙 227
19.3.3 防範全面建設 228
第五部分 結語篇
第 20章 增長的力量 232
20.1 智慧型增長對經濟的意義 232
20.1.1 網際網路改造工業經濟 232
20.1.2 網際網路經濟到智慧型經濟的過渡 233
20.1.3 智慧型增長的本質 234
20.2 智慧型增長的階段 235
20.2.1 早期積累 236
20.2.2 快速發展 236
20.2.3 精細運營 237
20.3 人的未來 238
20.3.1 被機器智慧型替代 239
20.3.2 做機器做不了的 240
20.3.3 駕馭機器智慧型 240
20.3.4 增長的代價 241
後記 242

相關詞條

熱門詞條

聯絡我們