時間譜系理論

在計算複雜度理論內,時間譜系理論(Time hierarchy theorems)是一個有關圖靈機時間限制上面一個重要的理論。用不大正式的說法解釋,這理論告訴我們圖靈機在給予更多時間之後,保證能解決更多的問題。

基本介紹

  • 中文名:時間譜系理論
  • 外文名:Time hierarchy theorems
簡介,計算複雜性理論,圖靈機,

簡介

在計算複雜度理論內,時間譜系理論(Time hierarchy theorems)是一個有關圖靈機時間限制上面一個重要的理論。用不大正式的說法解釋,這理論告訴我們圖靈機在給予更多時間之後,保證能解決更多的問題。
舉例:必然存在問題是圖靈機可以用n的時間解決,但是不能用n的時間解決。

計算複雜性理論

計算複雜性理論(Computational complexity theory)是理論計算機科學和數學的一個分支,它致力於將可計算問題根據它們本身的複雜性分類,以及將這些類別聯繫起來。一個可計算問題被認為是一個原則上可以用計算機解決的問題,亦即這個問題可以用一系列機械的數學步驟解決,例如算法。
如果一個問題的求解需要相當多的資源(無論用什麼算法),則被認為是難解的。計算複雜性理論通過引入數學計算模型來研究這些問題以及定量計算解決問題所需的資源(時間和空間),從而將資源的確定方法正式化了。其他複雜性測度同樣被運用,比如通信量(套用於通信複雜性),電路中門的數量(套用於電路複雜性)以及中央處理器的數量(套用於並行計算)。計算複雜性理論的一個作用就是確定一個能或不能被計算機求解的問題的所具有的實際限制。
在理論計算機科學領域,與此相關的概念有算法分析和可計算性理論。兩者之間一個關鍵的區別是前者致力於分析用一個確定的算法來求解一個問題所需的資源量,而後者則是在更廣泛意義上研究用所有可能的算法來解決相同問題。更精確地說,它嘗試將問題分成能或不能在現有的適當受限的資源條件下解決這兩類。相應地,在現有資源條件下的限制正是區分計算複雜性理論和可計算性理論的一個重要指標:後者關心的是何種問題原則上可以用算法解決。

圖靈機

圖靈機(英語:Turing machine),又稱確定型圖靈機,是英國數學家艾倫·圖靈於1936年提出的一種抽象計算模型,其更抽象的意義為一種數學邏輯機,可以看作等價於任何有限邏輯數學過程的終極強大邏輯機器。

相關詞條

熱門詞條

聯絡我們