《時代教育國外高校優秀教材精選:微積分(英文版)(原書第9版)》是一本在美國大學中使用面比較廣泛的微積分教材。教材共分14章,內容有:一元微積分,包括函式、極限,函式連續性,倒數及其套用,積分及其套用,不定型的極限及廣義積分,級數、數值方法及逼近;多元微積分,包括空間解析幾何,向量,多元函式的導數與二重、三重積分,以及向量場的微積分;最後是微分方程。每章之後有附加內容,包含利用圖形計算器或數學軟體計算的習題或帶研究性的小題目等。書中強調套用,習題數量多,類型多,重視不同數學學科之間的交叉,強調其實際背景,反映當代科技發展。每章之後有附加內容,有利用圖形計算器或數學軟體計算的習題或帶研究性的小題目等。
基本介紹
- 書名:微積分
- 作者:沃伯格 (Dale Varberg)
- 出版社:機械工業出版社
- 頁數:780頁
- 開本:16
- 品牌:機械工業出版社
- 外文名:Calculus
- 類型:科技
- 出版日期:2012年10月1日
- 語種:簡體中文, 英語
- ISBN:7111275985, 9787111275985
基本介紹
內容簡介
作者簡介
圖書目錄
序
Preface
0 Preliminaries
0.1 Real Numbers.Estimation,and Logic
0.2 Inequalities and Absolute Values
0.3 The Rectangular Coordinate System
0.4 Graphs of Equations
0.5 Functions and Their Graphs
0.6 Operations on Functions
0.7 Trigonometric Functions
0.8 Chapter Review
Review and Preview Problems
1 Limits
1.1 Introduction to Limits
1.2 Rigorous Study of Limits
1.3 Limit Theorems
1.4 Limits Involving Trigonometric Functions
1.5 Limits at Infinity;Infinite Limits
1.6 Continuity of Functions
1.7 Chapter Review
Review and Preview Problems
2 The Derivative
2.1 Two Problems with One Theme
2.2 The Derivative
2.3 Rules for Finding Derivatives
2.4 Derivatives of Trigonometric Functions
2.5 The Chain Rule
2.6 Higher.Order Derivatives
2.7 Implicit Differentiation
2.8 Related Rates
2.9 Differentials and Approximations
2.10 Chapter Review
Review and Preview Problems
3 Applications of the Derivative
3.1 Maxima and Minima
3.2 Monotonicity and Concavity
3.3 Local Extrema and Extrema on Open Intervals
3.4 Practical Problems
3.5 Graphing Functions Using Calculus
3.6 The Mean Value Theorem for Derivatives
3.7 Solving Equations Numerically
3.8 Antiderivatives
3.9 Introduction to Differential Equations
3.10 Chapter Review
Review and Preview Problems
4 The Deftnite Integral
4.1 Introduction to Area
4.2 The Definite Integral
4.3 The First Fundamental Theorem of Calculus
4.4 The Second Fundamental Theorem of Calculus and the Method of Substitution
4.5 The Mean Value Theorem for Integrals and the Use of Symmetry
4.6 Numerical Integration
4.7 Chapter Review
Review and Preview Problems
5 Applications of the Integral
5.1 The Area of a Plane Region
5.2 volumes of Solids:Slabs.Disks,Wlashers
5.3 Volumes of Solids of Revolution:Shells
5.4 Length of a Plane Curve
5.5 Work and Fluid Force
5.6 Moments and Center of Mass
5.7 Probability and Random Variabtes
5.8 Chapter Review322
Review and Preview Problems
6 Transcendental Functions
6.1 The Natural Logarithm Function
6.2 Inverse Functions and Their Derivatives
6.3 The Natural Exponential Function
6.4 General Exponential and Logarithmic Functions
6.5 Exponential Growth and Decay
6.6 First.Order Linear Differential Equations
6.7 Approximations for Differential Equations
6.8 The Inverse Trigonometric Functions and Their Derivatives
6.9 The Hyperbolic Functions and Their Inverses
6.10 Chapter Review
Review and Preview Problems
7 Techniques of Integration
7.1 Basic Integration Rules
7.2 Integration by Parts
7.3 Some Trigonometric Integrals
7.4 Rationalizing Substitutions
7.5 Integration of Rational Functions Using Partial Fractions
7.6 Strategies for Integration
7.7 Chapter Review
Review and Preview Problems
8 Indeterminate Forms and Improper
Integrals
8.1 Indeterminate Forms of Type 0/0
8.2 Other Indeterminate Forms
8.3 Improper Integrals: Infinite Limits of Integration
8.4 Improper Integrals: Infinite Integrands
8.5 Chapter Review
Review and Preview Problems
9 Infinite Series
9.1 Infinite Sequences
9.2 Infinite Series
9.3 Positive Series: The Integral Test
9.4 Positive Series: Other Tests
9.5 Alternating Series, Absolute Convergence, and Conditional Convergence
9.6 Power Series
9.7 Operations on Power Series
9.8 Taylor and Maclaurin Series
9.9 The Taylor Approximation to a Function
9.10 Chapter Review
Review and Preview Problems
10 Conics and Polar Coordinates
10.1 The Parabola
10.2 Ellipses and Hyperbolas
10.3 Translation and Rotation of Axes
10.4 Parametric Representation of Curves in the Plane
10.5 The Polar Coordinate System
10.6 Graphs of Polar Equations
10.7 Calculus in Polar Coordinates
10.8 Chapter Review
Review and Preview Problems
11 Geometry in Space and Vectors
11.1 Cartesian Coordinates in Three—Space
11.2 Vectors
11.3 The Dot Product
11.4 The Cross Product
11.5 Vector—Valued Functions and Curvilinear Motion
11.6 Lines and Tangent Lines in Three—Space
11.7 Curvature and Components of Acceleration
11.8 Surfaces in Three—Space
11.9 Cylindrical and Spherical Coordinates
11.10 Chapter Review
Review and Preview Problems
12 Derivatives for Functions of Two or More Variables
12.1 Functions of Two or More Variables
12.2 Partial Derivatives
12.3 Limits and Continuity
12.4 Differentiability
12.5 Directional Derivatives and Gradients
12.6 The Chain Rule
12.7 Tangent Planes and Approximations
12.8 Maxima and Minima
12.9 The Method of Lagrange Multipliers
12.10 Chapter Review
Review and Preview Problems
13 Multiple Integrals
13.1 Double Integrals over Rectangles
13.2 Iterated Integrals
13.3 Double Integrals over Nonrectangular Regions
13.4 Double Integrals in Polar Coordinates
13.5 Applications of Double Integrals
13.6 Surface Area
13.7 Triple Integrals in Cartesian Coordinates
13.8 Triple Integrals in Cylindrical and Spherical Coordinates
13.9 Change of Variables in Multiple Integrals
13.10 Chapter Review
Review and Preview Problems
14 Vector Calculus
14.1 Vector Fields
14.2 Line Integrals
14.3 Independence of Path
14.4 Green's Theorem in the Plane
14.5 Surface Integrals
14.6 Gauss's Divergence Theorem
14.7 Stokes's Theorem
14.8 Chapter Review
Appendix
A.1 Mathematical Induction
A.2 Proofs of Several Theorems
教輔材料說明
教輔材料申請表