基本介紹
- 中文名:明希豪森三難困境
- 外文名:Münchhausen trilemma
- 領域:知識論
- 作用:表明任何論證都是不可能的
簡介,阿格里帕與希臘懷疑論者,艾伯特公式,
簡介
對任何論證最終有三種可能性:
這三種可能性都不夠理想,故稱為三難困境。
這一困境亦被稱為阿格里帕三難困境(Agrippa's trilemma),這是由於希臘哲學家塞克斯圖斯·恩丕里柯在其著作《皮浪主義綱要》中提到了類似的五路論證,而第歐根尼·拉爾修則指出其為阿格里帕所提出。
後來德國哲學家雅各布·弗里德里希·弗里斯則提出了類似的三難困境,卡爾·波普爾稱其為“教條主義-無窮倒退-心理主義”三難困境。1968年,漢斯·阿爾伯特在所著的《批判理性論》(Traktat über kritische Vernunft)中引用了波普爾,並提出了“明希豪森三難困境”這一名稱。其中明希豪森是一位小說的主人公,他曾在受困沼澤時拉著自己的辮子爾逃出了沼澤。
在當代知識論中,融貫論接受循環論證,無窮主義接受無窮倒退,而基礎主義則接受終止論證。
阿格里帕與希臘懷疑論者
Sextus Empiricus在他的Pyrrhonism概述中給出了以下希臘懷疑主義的轉義。根據Sextus的說法,他們只被歸因於“最近的懷疑論者”和DiogenesLaërtius歸因於Agrippa。比喻是:
異議 - 不可判斷的分歧,導致無法選擇或排除任何東西
無限進步 - 所有證據都需要進一步證明,等等無限
關係 - 只考慮對象在主體及其與其他事物的關係中的表現
假設 - 簡單地假設一個前提是沒有證據
循環 - 所聲稱的真相涉及一個惡性循環
根據來自爭議的模式,我們發現對於所提議的問題的不可判斷的分歧在普通生活和哲學家之間都存在。因此,我們無法選擇或排除任何內容,最終我們會暫停判決。 在源自無限回歸的模式中,我們說作為提出的問題的信念來源提出的東西本身需要另一個這樣的來源,它本身需要另一個,所以無限制地,所以我們沒有任何意義開始建立任何東西,然後暫停判決。
在從相對論推導出的模式中,如上所述,現有對象相對於主體判斷和與其一起觀察的事物似乎是偶然的,但是我們暫停判斷它是什麼樣的。它的本質。 我們採用假設的模式,當教條主義者被無限地拋回時,從他們沒有建立的東西開始,但聲稱只是憑藉讓步而沒有證據。
互惠模式發生在需要確認被調查對象的東西時,需要使被調查對象具有說服力;然後,為了建立另一個,我們無法採取任何一種,我們暫停對兩者的判斷。
關於這五個轉義,第一和第三個是對十個原始懷疑理由的簡短總結,這是早期懷疑主義的基礎。另外三個顯示了持懷疑態度系統的進展,以及從感覺和意見的可疑性導致的共同異議轉變為更抽象和形上學的懷疑理由。
根據Victor Brochard的說法,“這五種比喻可以被認為是迄今為止最激進和最精確的懷疑論形式。從某種意義上說,它們當前仍然是不可抗拒的。”
艾伯特公式
Hans Albert提出的論點如下:只有三種可能的嘗試才能獲得某種理由:
追求“某些”知識的所有理由也必須證明其理由的正當性,並且這樣做必須重新證明其理由的手段。因此,沒有盡頭,只有無限回歸的絕望局面
可以使用循環論證來證明其合理性,但這會犧牲其有效性
人們可以停止自我證據或常識或基本原則,或者說出前言或任何其他證據,但在這樣做時,安裝“某些”理由的意圖將被放棄。
Albert的原始德語文本引用的英文譯文如下:
在這裡,人們只需選擇:
無限回歸,由於必須再往前走而出現,但實際上並不可行,因此也沒有提供一定的基礎。
演繹中的一個邏輯循環,這是由於一個人在需要找到時,會依賴於之前已經出現過要求基礎的陳述,以及哪個圈子也沒有導致任何某種基礎。
在某個點上突破搜尋,這確實看起來確實可行,但意味著隨意中止充分理由的原則。
阿爾伯特一再強調,對於演繹結論,Münchhausen三難論沒有任何限制。判決還涉及歸納,因果,超越和所有其他結構化的理由。他們都將是徒勞的。
因此,某些理由是不可能實現的。一旦放棄了某些知識的經典概念,人們就可以停止在一個人想要停止的理由的過程中,假設一個人已經準備好在必要的時候重新開始批判性思考。
這個三難論完善了知識理論中的經典問題。
證明Münchhausen三難運動所表達的任何真理的失敗並不一定導致客觀性被駁回,就像相對主義一樣。另一個例子是Karl Popper和Hans Albert的墮落主義,接受確定性是不可能的,但最好儘可能接近真理,同時記住我們的不確定性。
在阿爾伯特看來,證明任何某種真理的不可能性本身並不是一個真理。畢竟,人們需要假設邏輯推理的一些基本規則來推導他的結果,並且這樣做必須放棄追求“某些”理由,如上所述,或者試圖證明這些規則的合理性等。他建議它具有隻要沒有人提出一個被嚴格證明為某個真理的真理,就會被認為是真實的。幾位哲學家蔑視艾伯特的挑戰;他對這些批評的回應可以在他關於批判理性的論文和後來文章的長篇補遺中找到。