《數論與特殊函式(英文版)》是2011年1月1日科學出版社出版的圖書,作者是李海龍。
基本介紹
內容簡介,目錄,
內容簡介
李海龍的這本《數論與特殊函式(英文版)》分兩部分,第一部分是複變函數理論和特殊函式的基礎知識,可以作為基礎部分或研究的原始資料(第一章內容);第二部分是作者多年從事特殊函式的系統成果,這些成果發表在國內外著名雜誌上15篇論文,全是SCI源期刊(第二章到第七章內容)。第二部分主要研究了Hurwitzzeta函式的部分和的積分漸進公式,推廣了專著[SC]一些結果;研究了zeta函式和Riemannzeta函式洛朗係數的算術性質;研究了有理數域上一類zeta函式有關計算的偽問題,給出了Eisenstein公式的一般化,充分利用Lipcshitz-Lerchzeta函式的固有性質,簡單和明了套用於特殊函式之中;給出了兩個重要和公式體系,一個是對於C1函式的Poisson和,另一個是以用於Riemannzeta函式的功能方程的變換和公式,進一步推進Lipschitz-Lerchzeta函式的積分表示;得出了一些模關係結論,一個是對於周期貝努力多項式的傅立葉級數來歷的研究,另一個是Katsurada結果的一般化的研究。
目錄
Preface
Chapter 1 A quick introduction to complex analysis
1.1 Introduction
1.2 A quick introduction to complex analysis
1.2.1 Complex number system
1.2.2 Cauchy-Riemann equation and inverse functions
1.2.3 A rough description of complex analysis
1.2.4 Power series
1.2.5 Laurent expansion, residues
1.3 Around Jensen's formula
1.4 Partial fraction expansion
1.4.1 Partial fraction expansions for rational functions
1.4.2 Partial fraction expansion for the cotangent function and so its applications
Chapter 2 Elaboration of results of Srivastava and Choi
2.1 Glossary of symbols and formulas
2.2 Around the Hurwitz zeta-function
2.2.1 Applications of Proposition 2.1
2.2.2 Applications of Corollary 2.1
2.3 Euler integrals
2.4 Around the Euler integral
2.5 Around the Catalan constant
2.6 Kummer's Fourier series for the Log Gamma function
Chapter 3 Arithmetic Laurent coefficients
3.1 Introduction
3.2 Proof of results
3.3 Examples
3.4 The Piltz divisor problem
3.5 The partial integral Ik(x)
3.6 Generalized Euler constants and modular relation
Chapter 4 Mikolas results and their applications
4.1 From the Riemann zeta to the Hurwitz zeta
4.2 Introduction and the polylogarithm case
4.3 The derivative case
Chapter 5 Zeta-value relations
5.1 The structural elucidation of Eisenstein's formula
5.2 Proof of results
5.3 The Lipshitz-Lerch transcendent
Chapter 6 Summation formulas of Poisson and of Plana
6.1 The Poisson summation formula
6.2 Theta transformation formula and functional equation
6.3 The Hurwitz-Lerch zeta-function
6.4 Proof of results
Chapter 7 Modular relation and its applications
7.1 Introduction
7.2 The Riesz sum case
7.3 The Diophantine Dirichlet series
7.4 Elucidation of Katsurada's results
7.5 Proof of results
7.6 Modular relations
Bibliography
Index