拒絕域

拒絕域

拒絕域亦稱否定域,又稱臨界域,是統計學的基本概念之一。指在假設檢驗中,據以拒絕原假設的統計量的取值範圍,假設檢驗中根據檢驗統計量的分布,由給定的小機率α(0<α<1)作為顯著性水平所確定的拒絕原假設H0的區間稱為拒絕域,即統計量在其中取值的機率為α的區域。

基本介紹

  • 中文名:拒絕域
  • 外文名:rejection region/critical region
  • 別稱否定域、臨界域
  • 用途:判斷是否接受原假設的數量界限
  • 相關概念:檢驗統計量、顯著性水平等
  • 所屬領域:統計學
定義,拒絕域的位置與大小,檢驗統計量,統計決策所依據的規則,

定義

能夠拒絕原假設的檢驗統計量的所有可能取值的集合,稱為拒絕域;不能夠拒絕原假設的檢驗統計量的所有可能取值的集合稱為接受域;根據給定的顯著性水平確定的拒絕域的邊界值,稱為臨界值
拒絕域就是由顯著性水平
所圍成的區域。如果利用樣本觀測結果計算出來的檢驗統計量的具體數值落在了拒絕域內,就拒絕原假設,否則就不能拒絕原假設。

拒絕域的位置與大小

拒絕域的大小與人們事先選定的顯著性水平有一定關係。在確定了顯著性水平
之後,就可以根據
值的大小確定出拒絕域的具體邊界值。
在給定顯著性水平後,查統計表就可以得到具體的臨界值(也可以直接由Excel中的函式命令計算得到)。將檢驗統計量的值與臨界值進行比較,就可做出拒絕或不拒絕原假設的決策。
當樣本量固定時,拒絕域的面積隨著
的減小而減小。
值越小,為拒絕原假設所需要的檢驗統計量的臨界值與原假設的參數值就越遠。拒絕域的位置取決於檢驗是單側檢驗還是雙側檢驗。雙側檢驗的拒絕域在抽樣分布的兩側。而單側檢驗中,如果備擇假設具有符號“<”,拒絕域位於抽樣分布的左側,稱為左側檢驗;如果備擇假設具有符號“>”,拒絕域位於抽樣分布的右側,稱為右側檢驗
在給定顯著性水平
下,拒絕域和臨界值如圖1、2、3所示。
圖1圖1
圖2圖2
圖3圖3

檢驗統計量

根據樣本觀測結果計算得到的,並據以對原假設和備擇假設做出決策的某個樣本統計量,稱為檢驗統計量
檢驗統計量是用於假沒檢驗計算的統計量,實際上是對總體參數的點估計量,但點估計量不能直接作為檢驗的統計量,只有將其標準化後,才能用於度量它與原假設的參數值之問的差異程度。而對點估計量的標準化依據原則是:
(1) 原假設H0為真;
(2) 點估計量的抽樣分布
通常將標準化統計量簡稱為檢驗統計量,標準化的統計量可表示為:
標準化統計量=(點估計量-假沒值)/點估計量的抽樣標準差。

統計決策所依據的規則

統計決策所依據的規則如下:
(1) 給定顯著性水平
,查表得出相應的臨界值
(2) 將檢驗統計量的值與
水平的臨界值進行比較:
(3) 做出決策:
雙側檢驗 |統計量的值|>臨界值,拒絕
左側檢驗 統計量的值<-臨界值,拒絕
右側檢驗 統計量的值>臨界值,拒絕

相關詞條

熱門詞條

聯絡我們