基本介紹
- 中文名:戴欣榮
- 出生日期:1971年
- 畢業院校:浙江大學
- 學位/學歷:博士
- 專業方向:Fourier分析、小波分析、分形幾何
- 任職院校:中山大學
教育經歷,研究方向,主要成就,出版著作,
教育經歷
1989.9-1999.3 浙江大學(1993.7 學士、1996.3 碩士、1999.3 博士);
1999.4-2008.10 浙江工業大學(2001 副教授、2007 教授);
2008.11- 中山大學 (2008.11 副教授,2010.1 教授)。
研究方向
Fourier分析、小波分析、分形幾何。
主要成就
3、Fourier標架與分形譜測度,國家自然科學基金--面上項目,2014.1-2017.12.
2、藝術的數位化鑑定技術,國家自然科學基金--中美合作項目,2010.1-2011.12.
1、加細分布、樣條函式及相關問題的研究,國家自然科學基金--面上項目,2009.1-2011.12.
出版著作
23、Xin-Rong Dai and Qiyu Sun, The abc-problem for Gabor systems, Mem. Amer. Math. Soc., To Appear.
22、Xin-Rong Dai, Wei-Hong He, Jun Luo and Bo Tan, An isodiametric problem of fractal dimension, Geom. Dedicata, 175(2015), 79-91.
21、Xin-Rong Dai and Qiyu Sun, Spectral measure with arbitrary Hausdorff dimensions, J. Funct. Anal., 268(2015), 2464-2477
20、Xin-Rong Dai, Xing-Gang He and Ka-Sing Lau, On spectral $N$-Bernoulli measures. Adv. Math., 259 (2014), 511–531.
19、Xin-Rong Dai, Xing-Gang He and Chun-Kit Lai, Spectral property of Cantor measures with con-secutive digits. Adv. Math., 242(2013),187–208.
18、Xin-Rong Dai, Wei-Hong He and Jun Luo, An isodiametric problem with additional constraints. J. Math. Anal. Appl., 397(2013), 1–8.
17、Xin-Rong Dai, When does a Bernoulli convolution admit a spectrum? Adv. Math., 231(2012), 1681–1693.
16、Xin-Rong Dai and Jun-Quan Song, Summation and intersection of refinable shift invariant spaces. Sci. China Math., 54(2011), 2087–2097.
15、Xin-Rong Dai and Yang Wang, Classification of refinable splines in $ R^d$. Constr. Approx., 31 (2010), 343-358.
14、Xin-Rong Dai, De-Jun Feng and Yang Wang, Refinable functions with non-integer dilations. Third International Congress of Chinese Mathematicians. Part 1, 2, 493-511, AMS/IP Stud. Adv. Math., 42, pt. 1, 2, Amer. Math. Soc., Providence, RI, 2008.
13、Xin-Rong Dai and Yang Wang, On refinable sets.Methods Appl. Anal., 14(2007), 165–177.
12、Xin-Rong Dai, De-Jun Feng and Yang Wang, Refinable functions with non-integer dilations. J. Funct. Anal., 250(2007), 1–20.
11、Xin-Rong Dai, De-Jun Feng and Yang Wang, Structure of refinable splines. Appl. Comput. Harmon. Anal., 22(2007), 374–381.
10、Xin-Rong Dai, Compactly supported multi-refinable distributions and B-splines. J. Math. Anal. Appl., 323(2006), 379–386.
9、Xin-Rong Dai, De-Jun Feng and Yang Wang, Classification of refinable splines. Constr. Approx., 24(2006), 187–200.
8、Yong-Yang Jin andXin-Rong Dai, Continuity of solutions for a class of degenerate Schrö-dinger equations. (Chinese). Acta Math. Sci., Ser. A Chin. Ed., 24 (2004), 238–245.
7、Xin-Rong Dai, Refinable distributions supported on self-affine tiles. Appl. Math. J. Chinese Univ., Ser. B, 17(2002), 69–74.
6、Xin-Rong Dai, Daren Huang and Qiyu Sun, Local polynomial property and linear independ-ence of refinable distributions. Arch. Math. (Basel), 78(2002), 74–80.
5、Xin-Rong Dai, The equivalence of iterated systems on $R$. J. Math. Study, 34(2001), 27–31.
4、Yun-Zhang Li and XinRong Dai, A note on continuous refinement equations. Gongcheng Shuxue Xuebao, 17(2000), 48–52.
3、Xin-Rong Dai, Qiyu Sun and Zeyin Zhang, Compactly supported both $m$ and $n$ refinable dist-ributions. East J. Approx., 6(2000), 201–209.
2、Ning Bi, Xin-Rong Dai and Qiyu Sun, Construction of compactly supported M-band wavelets. Appl. Comput. Harmon. Anal., 6(1999), 113–131.
1、Xin-Rong Dai, Daren Huang and Qiyu Sun, Some properties of five-coefficient refinement equation. Arch. Math. (Basel), 66(1996), 299–309.