《幾類奇異攝動系統的分支問題研究》是依託福建師範大學,由沈建和擔任項目負責人的青年科學基金項目。
基本介紹
- 中文名:幾類奇異攝動系統的分支問題研究
- 項目類別:青年科學基金項目
- 項目負責人:沈建和
- 依託單位:福建師範大學
《幾類奇異攝動系統的分支問題研究》是依託福建師範大學,由沈建和擔任項目負責人的青年科學基金項目。
《幾類奇異攝動系統的分支問題研究》是依託福建師範大學,由沈建和擔任項目負責人的青年科學基金項目。項目摘要基於幾何奇異攝動理論與動力系統分支方法,本項目針對幾類重要的奇異攝動系統,開展如下三個方面的分支問題研究:.1. 以...
《奇異攝動及其分支問題》是依託北京航空航天大學,由李翠萍擔任項目負責人的青年科學基金項目。項目摘要 本項目研究了含單參數的二維奇異攝動系統和兩類單參數的三維奇異攝動系統的解當ε趨於零時的漸近性質,周期解的存成生及其漸近估計,...
空間對照結構是蘇聯Thxohob學派在20世紀90年代末提出的概念。空間對照結構也稱強反差結構,是指在含小參數的多尺度奇異攝動系統中,退化系統有多個根,而原問題的真解則是由多個根的不同不同部分跳躍而成並產生的複雜結構。奇異攝動邊值...
為非奇異,因此該方法不能處理非標準連續線性奇異攝動系統。(2)廣義分解法。“廣義分解法”從廣義系統角度出發,將慢子系統描述為廣義系統,從而克服“慢、快分解法”不能處理非標準連續線性奇異攝動系統的問題。對於充分小攝動參數,廣義...
本課題主要研究四類問題:1、運用奇異攝動理論、非線性分析理論研究二階非線性微分方程奇異攝動問題、奇異攝動分數階Logistic方程的初值問題、具有兩個轉向點的大參數奇異攝動方程、非線性奇異攝動系統等,得到攝動解的存在性、唯一性以及漸近...
奇異攝動問題的研究已發展為控制理論的一個重要分支。其中常用的方法有伸縮坐標法、匹配漸近展開法、複合展開法、參數變易法、平均法、多重尺度法等。對於弱非線性系統,若把非線性部分看作是對線性部分的攝動,常能用攝動方法(這種情況...
對奇異攝動理論的研究已有很長的歷史,但對奇異攝動產生周期解的個數這個核心問題,即使是二維系統,都曾缺乏精確研究的工具。最近10幾年來,F. Dumortier, R. Roussarie 和 P. Maesschalck 三人填補了這方面的一個空白,他們發表了...
但是,現有奇異攝動系統控制方法缺乏對執行器飽和和測量信息不完整性的考慮,常導致控制系統性能低下,甚至不穩定。本項目研究基於不完整測量信息的奇異攝動飽和系統的分析和設計問題。首先,針對採樣周期長、多速率採樣、傳輸過程不可靠、隨機...
非線性微分方程奇異攝動系統和邊值問題是當前一個非常活躍的課題,具有重要的套用背景,本項目擬開展如下研究: 1、研究複雜奇異攝動微分系統、快慢動力系統和高維動力系統的同異宿軌道、分支及混沌現象,討論非線性時滯微分方程奇異攝動系統...
奇異攝動問題的研究已發展為控制理論的一個重要分支。其中常用的方法有伸縮坐標法、匹配漸近展開法、複合展開法、參數變易法、平均法、多重尺度法等。對於弱非線性系統,若把非線性部分看作是對線性部分的攝動,常能用攝動方法(這種情況...
他們提出了如下公開問題:希望利用在文[Dumortier,Roussarie,Canard cycles and center manifolds,Mem.Amer.Math.Soc,1996]中提出的幾何奇異攝動理論得到同樣的結論.本項目將首先致力於解決此公開問題,然後給出分段光滑系統鴨環的一般計算...