多項分布

多項分布

多項式分布(Multinomial Distribution)是二項式分布的推廣。

二項分布的典型例子是扔硬幣,硬幣正面朝上機率為p, 重複扔n次硬幣,k次為正面的機率即為一個二項分布機率。把二項分布公式推廣至多種狀態,就得到了多項分布。

基本介紹

  • 中文名:多項分布
  • 外文名:Multinomial Distribution
  • 源於:二項式分布的推廣
  • 所屬領域:數理科學
  • 研究對象:隨機變數
  • 標記:X~PN(N:p1.p2,…,pn)
定義,舉例,公式套用,機率公式,套用,

定義

如果一個隨機向量X=(X1,X2,…,Xn)滿足下列條件:
(1)Xi≥0(1≤i≤n),且X1+X2+…+Xn=N;
(2)設m1,m2,…,mn為任意非負整數,且m1+m2+…+mn=N,則事件
{X1=m1,X2=m2,…,Xn=mn)的機率為
多項分布
多項分布
則稱隨機向量X=(X1,X2,…,Xn)服從多項分布,記作X~PN(N:p1.p2,…,pn)。
多項分布是二項分布的推廣。在一座大城市中,若男性在總人口中的比例為p,今從
城市中隨機抽N個人,用X表示其中男性的數目,則X~B(N,p)、,類似地,在一座城市
中,若將人口按照年齡分成n組,這n組人在總人口中各占的比例分別為p1,p2,…,
),今從城市中隨機抽N個人,用(X1,X2,…,Xn分別表示這N個人中每個年齡
組的人數,則X=(X1,X2,…,Xn)服從多項分布。

舉例

更一般性的問題會問:“點數1~6的出現次數分別為(x1,x2,x3,x4,x5,x6)時的機率是多少?其中sum(x1~x6)= n”。這就是一個多項式分布。
把二項擴展為多項就得到了多項分布。比如扔骰子,不同於扔硬幣,骰子有6個面對應6個不同的點數,這樣單次每個點數朝上的機率都是1/6(對應p1~p6,它們的值不一定都是1/6,只要和為1且互斥即可,比如一個形狀不規則的骰子),重複扔n次,如果問有x次都是點數6朝上的機率就是:
。更一般性的問題會問:“點數1~6的出現次數分別為(x1,x2,x3,x4,x5,x6)時的機率是多少?其中sum(x1~x6)= n”。這就是一個多項式分布問題。這時只需用上邊公式思想累乘約減就會得到下面圖1的機率公式。
某隨機實驗如果有k個可能結局A1、A2、…、Ak,分別將他們的出現次數記為隨機變數X1、X2、…、Xk,它們的機率分布分別是p1,p2,…,pk,那么在n次採樣的總結果中,A1出現n1次、A2出現n2次、…、Ak出現nk次的這種事件的出現機率P有下面公式:
用另一種形式寫為:

公式套用

機率公式

這就是多項分布的機率公式。把它稱為多項式分布顯然是因為它是一種特殊的多項式展開式的通項。
我們知道,在代數學裡當k個變數的和的N次方的展開式(p1+ p2+…+ pk )^N 是一個多項式,其一般項就是前面的公式給出的值。如果這k個變數恰好是可能有的各種結局的出現機率,那么,由於這些機率的合計值對應一個必然事件的機率。而必然事件的機率等於1,於是上面的多項式就變成了 (p1+ p2+…+ pk )^N =1^N=1, 即此時多項式的值等於1。
因為(p1+ p2+…+ pk )^N的值等於1, 我們也就認為它代表了一個必然事件進行了N 次抽樣的機率(=1,必然事件)。而當把這個多項式可以展開成很多項時,這些項的合計值等於1提示我們這些項是一些互不相容的事件(N次抽樣得到的)的對應機率, 即多項式展開式的每一項都是一個特殊的事件的出現機率。於是我們把展開式的通項作為A1出現n1次,A2出現n2次,…,Ak出現nk次的這種事件的出現機率。這樣就得到了前面的公式。
如果各個單獨事件的出現機率p1,p2,…,pk都相等,即p1=p2=…=pk=p(注意這裡是小寫的p),注意到p1+p2+…+pk =1,就得到p1= p2 =…=pk =p=1/k。把這個值代入多項式的展開式,就使展開式的各個項的合計值滿足下式:
∑[ N!/(n1!n2!…nk!)](1/k)^N=1
即 ∑[ N!/(n1!n2!…nk!)]=k^N
以上求和中遍及各個ni的一切可能取的正整數值,但是要求各個ni的合計值等於N。即 n1+n2+…nk=N.

套用

用於處理一次實驗有多個可能的結果的情況。
熱力學討論物質微觀狀態的可能個數時,經常用另外的思路引出N!/(n1!n2!…nk!)式。並且稱它為熱力學幾率。它是一個比天文數字還大很多的數,把它稱為幾率(機率)並不妥當。但是熱力學裡由於各個微觀狀態的出現機率相等,這對應我們在前面討論的p1= p2 =…=pk =p=1/k,於是 [N!/(n1!n2!…nk!)](1/k^N) 就真正具有數學上的機率的含義。換句話說,物理學裡的熱力學幾率[N!/(n1!n2!…nk!)]乘上(1/k^N)以後就是數學中定義的(具有歸一性)的機率了。

相關詞條

熱門詞條

聯絡我們