嚴格遞增

嚴格遞增

遞增(increasing)函式是指當函式的任何自變數增加的時候,函式值不減少。嚴格遞增(strongly increasing)是指當函式任何自變數增加的時候函式值也增加。類似地,遞減函式(decreasing)是指當函式的任何自變數增加的時候函式值不增加,嚴格遞減(strongly decreasing)是指當函式任何自變數增加的時候函式值卻減少。

研究數列時,對於一個實數列{un},如果從第2項起,每一項都大於它的前一項,即un+1>un,則把這樣的實數列稱做嚴格遞增數列;或說這一數列嚴格遞增或嚴格單調增加。

基本介紹

  • 中文名:嚴格遞增
  • 定義:任意x1.x2,若x1>x2,
  • 第2項:每一項都大於它的前一項的數列
  • 類別:數學
嚴格遞增函式,定義1,定義2,舉例分析,嚴格遞增數列,相關結論,

嚴格遞增函式

定義1

遞增(increasing)函式是指當函式的任何自變數增加的時候,函式值不減少。嚴格遞增(strongly increasing)是指當函式任何自變數增加的時候,函式值也增加。類似地,遞減函式(decreasing)是指當函式的任何自變數增加的時候函式值不增加,嚴格遞減(strongly decreasing)是指當函式任何自變數增加的時候函式值卻減少。

定義2

偏序集
,如果對任意的
,都有
,則稱
單調遞增的;如果對任意的
,都有
,則稱
為嚴格單調遞增的。
類似的,也可以定義單調遞減和嚴格單調遞減的函式。

舉例分析

例1 單調遞增函式的一些例子:
(1)
是嚴格單調遞增的;
(2)偏序集
,其中,
為包含關係,≤為一般的小於或等於關係。令
是單調遞增的,但不是嚴格單調遞增的。

嚴格遞增數列

對於一個實數列
,如果從第2項起,每一項都不小於它的前一項,即有
,這樣的實數列叫做遞增數列,也叫做上升數列;或說這一數列單調增加.
如果每一項都大於它的前一項,即
,則把這樣的實數列叫做嚴格遞增數列;或說這一數列嚴格遞增嚴格單調增加
對於一個實數列
,如果從第2項起,每一項都不大於它的前一項,即有
,這樣的實數列叫做遞減數列,也叫做下降數列,或說這一數列單調減少。
如果每一項都小於它的前一項,即
,則把這樣的實數列叫做嚴格遞減數列;或說這一數列嚴格遞減嚴格單調減少

相關結論

一個嚴格遞增的連續函式,它不處處可微。
下面的例子是由Pringsheim作出的,令
易見,
上連續,因為當x≠0時,
所以
內都是嚴恪遞增的,又當x>0時,
,而當x<0時,
,可見
內也是嚴格遞增的,但由於
不存在,因而
在x=0處不可微。
注意:有人或許會猜測,嚴格單調函式的不可微的點都是一些間斷點,上述反例說明了這種猜測是不正確的。

相關詞條

熱門詞條

聯絡我們