周日視差

周日視差是由地球自轉或在地球上不同地點觀察產生的視差。從地球上不同的地點觀測(在給定的同一時刻),月球和較小的類地行星小行星會出現在背景天恆星上的位置會有所不同。

基本介紹

  • 中文名:周日視差
  • 外文名:Diurnal parallax
  • 定義:M點的地球半徑在天體S處的張角
  • 影響因素:隨著天體的高度變化而改變
  • 首次測定人:法國拉卡伊和拉朗德
  • 首次測定時間:1751~1753年
  • 釋義:地球或天體周日視運動產生的視差
視差,視差的套用,視知覺,天文學的距離測量,恆星視差,算法,周日視差,太陽視差,相關條目,

視差

視差是從兩個不同的點查看一個物體時,視位置的移動或差異,量度的大小位是這兩條線交角的角度或半角度。這個名詞是源自希臘文的παράλλαξις(parallaxis),意思是"改變"。從不同的位置觀察,越近的物體有著越大的視差,因此視差可以確定物體的距離。
從目標看兩個點之間的夾角,叫做這兩個點的視差角,兩點之間的距離稱作基線。
天文學家使用視差的原理測量天體的距離,包括月球太陽、和在太陽系之外的恆星。例如,依巴谷衛星測量了超過100,000顆鄰近恆星的距離。這為天文學提供了測量宇宙距離尺度的階梯,是其它測距方法的基礎。在此處,"視差"這個名詞是兩條到恆星的視線交角的角度或半角度。
一些光學儀器,像是雙筒望遠鏡顯微鏡、和雙鏡頭單眼反射相機,會以略為不同的角度觀看物體,都會受到視差的影響。許多動物的兩隻眼睛有著重疊的視野,可以利用視差獲得深度知覺;此一過程稱為立體視覺。這種效果在電腦視覺用於電腦立體視覺,並有一種裝置稱為視差測距儀,利用它來測量發現目標的距離,也可以改變為測量目標的高度。
一個簡單的,日常都能見到的視差例子是,汽車儀錶板上"指針"顯示的速度計。當從正前方觀看時,顯示的正確數值可能是60;但從乘客的位置觀看,由於視角的不同,指針顯示的速度可能會略有不同。

視差的套用

視差在套用上根據不同需要派生出各個稍有不同的概念:
  • 物理學中,指在不同位置觀察遠近兩物體時,它們間發生相對位置變化的現象。
  • 天文學中,指因為觀測者位置的移動或由不同地點觀測同一天體而引起的方向變化;測量天體視差是確定天體之間距離最基本的方法。天文學家在早期使用此方法測量了月球(從紐約和華盛頓拍攝的照片分析)離地球的距離與天鵝座61的距離。
  • 攝影測量中,指立體像對上同名像點的坐標差,其橫坐標差稱為“左右視差”,縱坐標差稱為“上下視差”;在航空攝影測量中,左右視差可以推算地麵點之間的高差,上下視差可用以確定像片之間在攝影時的相對關係。
  • 攝影術中,指從相機取景器中看到的物體位置和鏡頭攝入的物體位置不相一致的現象;相機距物體越遠,視差越小;高級取景器有校正視差的機能,使物體在感光成像上的位置和從取景器中所看到的位置無論遠近都相合;單眼相機由於取景器和攝影通過同一物鏡,所以基本沒有視差。

視知覺

主條目:立體視覺深度知覺雙眼視覺和雙眼像差
如同人類和其他動物的雙眼都在頭上不同的位置,它們提供了不同的觀點。這是立體視覺的基礎,在這個過程中,大腦接收了不同的訊息,從而獲得深度知覺,並從兩眼的視差估計到物體的距離。有些動物會利用運動視差,這些動物依靠移動(也許只是頭部)來獲得不同的觀點。例如,鴿子(它們兩眼的視場沒有重疊,因此沒有立體視覺)上下擺動頭部以獲得深度。

天文學的距離測量

恆星視差

主條目:恆星視差
在星際的尺度,視差的創建來自地球在軌道上不同的位置導致鄰近的恆星相對於遙遠天體的移動。通過觀測視差,測量角度和使用幾何學,可以確定到不同天體的距離。當被討論的天體是恆星時,這種效應稱為恆星視差
恆星視差最常被使用的是周年視差,定義是從地球和太陽觀察恆星的視角差,也就是以地球繞太陽的平均軌道半徑看一顆恆星在對角的角度。1秒差距(3.26光年)被定義為周年視差為1角秒的距離。周年視差一般是通過觀察恆星在的不同時間,隨著地球在它的軌道上移動測量的。周年視差是第一個最可靠的測量最接近恆星的方法。第一個成功測量到的恆星視差是白塞耳在1833年使用量日儀測量的天鵝座61。恆星視差依然是校準其他測量方法的標準。精確測量距離的基礎是恆星視差,它需要測量地球到太陽的距離,而現在是以雷達在行星表面的反射來測量。
在這些計算中所涉及的角度都很小,因此很難測量。距離太陽最近的恆星(因此這顆恆星有最大的視差),比鄰星,周年視差是0.7687±0.0003角秒。這相當於從5.3公里之外觀察直徑2公分大小物體的所形成的角。
恆星視差是如此的小,因此在無法觀測到恆星視差的年代,“恆星視差不存在”被作為反對日心說的主要科學論證。很明顯的,如果星星的距離夠遠,從歐幾里得幾何學是無法察覺的,但由於種種的原因,使這種巨大的距離難以置信:其中之一是為了使缺乏視差的恆星能夠相容,土星軌道和第八領域(恆星)之間必須有巨大而不太可能存在的空隙,使得第谷成為哥白尼日心說的主要反對者。
在1989年,依巴谷衛星發射的主要目的就是觀察近距離恆星的視差和自行,這種方法使數量增加了10倍。即便如此,依巴谷衛星能測量出視差角的恆星距離也只能達到1,600光年,相較於銀河系的直徑只比1%多了一點。歐洲空間局蓋亞任務,預計在2012年升空,在2013年上線,能夠讓視差角的測量精確度達到10微秒,將能夠繪製出鄰近地球數萬光年內恆星(與潛在行星)的位置圖。

算法

以視差來測量距離在三角學的原則上是一種特殊狀況,如果要解出在網路中三角形所有的邊和角,除了網路中所有的角,至少有一邊的長度必須被測量。因此,仔細測量過長度的一條基線可以解決整個三角網的規模。對視差而言,這個三角形是極其細長和狹窄的,測量的是最短的邊(觀測者的移動)和非常小的角(永遠都小於1角秒,其餘的兩個角都接近90度),要測量的是長邊(實際上這兩邊的長是相同)。
假設這個角度很小(見下文的#推導),一個天體的距離(以秒差距量度)是視差(以角秒量度)的倒數:
。例如,比鄰星的距離是1/0.7687=1.3009秒差距(4.243光年).。

周日視差

周日視差是由地球自轉或在地球上不同地點觀察產生的視差。從地球上不同的地點觀測(在給定的同一時刻),月球和較小的類地行星小行星會出現在背景天恆星上的位置會有所不同。

太陽視差

哥白尼提出日心繫統之後,地球繞著太陽公轉,它可以建立起一個沒有正確尺寸的太陽系模型。若要確定尺寸,它只需要測量在太陽系內一個天體的距離,也就是說,地球到太陽的平均距離(現在稱為天文單位,或以AU表示)。當以三角測量發現,從地球中心和表面觀測太陽的位置差異,即以地球半徑為基線測量太陽的對頂角,這被稱為太陽視差。知道太陽視差和地球的平均半徑,就能夠測量天文單位。首先,這是在估計膨脹宇宙和可見宇宙大小的漫漫長路上的一小步。
測量地球到月球距離最原始的方法是在阿里斯塔克斯的太陽和月球的距離與大小這一本書中提出的。他注意到太陽、月球和地球在上弦和下弦會形成直角三角形(月球位於直角上)。然後,他估計出月球、地球和太陽的夾角是87°。使用正確的幾何學,但不正確的觀測資料,阿里斯塔克斯推論太陽的距離略低於月球距離的20倍。但是,這個角度的正確數值接近89° 50',而太陽的實際距離比月球遠了約390倍。他指出月球和太陽有著幾乎一樣的視角大小,因此它們的直徑和與地球的距離有著相同的比值。因此,他也估計太陽比月球大20倍左右;這一結論,儘管源於不正確的資料,但他的邏輯是正確的。他也明確的表示太陽大於地球,這可以支持日心說的模型。
儘管阿里斯塔克斯以正確的幾何原理觀測視差,但因為觀測的不正確導致結果不正確,卻也成為估計太陽系大小的基準長達2,000年之久,直到1761年和1769年觀測金星凌日後才被改正。這個方法是愛德蒙·哈雷在1716年提出來的,可惜他未能活著看見結果。使用金星凌日的方法由於黑滴現象的影響而不太成功,但由此得到的結果是15,300萬公里,與目前接受的14,960萬公里,只有2%的差異。

相關條目

相關詞條

熱門詞條

聯絡我們