向量微積分

向量微積分

《向量微積分》是2008年世界圖書出版公司出版的圖書,作者是(英國)馬修斯(Mattews P.C.)。主要講述了Vector calculus is the fundamental language of mathematical physics. It provides a way to describe physical quantities in three-dimensional space and the way in which these quantities vary. Many topics in the physical sciences can be analysed mathematically using the techniques of vector calculus. These topics include fluid dynamics, solid mechanics and electromagnetism, all of which involve a description of vector and scalar quantities in three dimensions.

基本介紹

  • 書名:向量微積分
  • ISBN:9787506292269
  • 頁數: 179頁
  • 裝幀:平裝
圖書信息,作者簡介,內容簡介,目錄,

圖書信息

出版社: 世界圖書出版公司; 第1版 (2008年5月1日)
外文書名: Vector Calculus
正文語種: 英語
開本: 32
條形碼: 9787506292269
尺寸: 22 x 14.8 x 1.2 cm
重量: 240 g

作者簡介

作者:(英國)馬修斯(Mattews P.C.)

內容簡介

《向量微積分》
This book assumes no previous knowledge of vectors. However, it is assumed that the reader has a knowledge of basic calculus, including differentiation, integration and partial differentiation. Some knowledge of linear algebra is also required, particularly the concepts of matrices and determinants.

目錄

1. Vector Algebra
1.1 Vectors and scalars
1.1.1 Definition of a vector and a scalar
1.1.2 Addition of vectors
1.1.3 Components of a vector
1.2 Dot product
1.2.1 Applications of the dot product
1.3 Cross product
1.3.1 Applications of the cross product
1.4 Scalar triple product
1.5 Vector triple product
1.6 Scalar fields and vector fields
2. Line,Surface and Volume Integrals
2.1 Applications and methods of integration
2.1.1 Examples of the use of integration
2.1.2 Integration by substitution
2.1.3 Integration by parts
2.2 Line integrals
2.2.1 Introductory example: work done against a force
2.2.2 Evaluation of line integrals
2.2.3 Conservative vector fields
2.2.4 Other forms of line integrals
2.3 Surface integrals
2.3.1 Introductory example:flow through a pipe
2.3.2 Evaluation of surface integrals
2.3.3 0lther forms of surface integrals
2.4 volume integrals
2.4.1 Introductory example:mass of an object with variable density
2.4.2 Evaluation of volume integrals
3. Gradient,Divergence and Curl
3.1 Partial difierentiation and Taylor series
3.1.1 Partial difierentiation
3.1.2 Taylor series in more than one variable
3.2 Gradient of a scalar field
3.2.1 Gradientsconservative fields and potentials
3.2.2 Physical applications of the gradient
3.3 Divergence of a vector field
3.3.1 Physical interpretation of divergence
3.3.2 Laplacian of a scalar field
3.4 Cllrl of a vector field
3.4.1 Physical interpretation of curl
3.4.2 Relation between curl and rotation
3.4.3 Curl and conservative vector fields
4. Suffix Notation and its Applications
4.1 Introduction to suffix notation
4.2 The Kronecker delta
4.3 The alternating tensor
4.4 Relation between ijk and ij
4.5 Grad,div and curl in suffix notation
4.6 Combinations of grad,div and curl
4.7 Grad,div and curl applied to products of functions
5. Integral Theorems
5.1 Divergence theorem
5.1.1 C:onservation of mass for a fluid
5.1.2 Applications ofthe divergence theorem
5.1.3 Related theorems linking surface and volume integrals
5.2 Stokes’S theorem
5.2.1 Applications of Stokes’S theorem
5.2.2 Related theorems linking line and surface integrals
6. Curvilinear Coordinates
6.1 Orthogonal curvilinear coordinates
6.2 Grad,div and curl in orthogonal curvilinear coordinate systems
6.2.1 Gradient
6.2.2 Divergence
……
7. Cartesian Tensors
8. Applications of Vector Calculus
Solutions
Index

相關詞條

熱門詞條

聯絡我們