1832年,切比雪夫全家遷往莫斯科。為了孩子們的教育,父母請了一位相當出色的家庭教師П. H. 波戈列日斯基(Погорелский),他是當時莫斯科最有名的私人教師和幾本流行的初等數學教科書的作者。切比雪夫從家庭教師那裡學到了很多東西,並對數學產生了強烈的興趣。他對歐幾里得(Euclid)《幾何原本》(Elements)當中關於沒有最大素數的證明留下了極深刻的印象。
大學時代
1837年,年方16歲的切比雪夫進入莫斯科大學,成為哲學系下屬的物理數學專業的學生。在大學階段,摩拉維亞出生的數學家H. Д. 布拉什曼 (Брaшмaн) 對他有較大的影響。1865年9月30日切比雪夫曾在莫斯科數學會上宣讀了一封信,信中把自己套用連分數理論於級數展開式的工作歸因於布拉什曼的啟發。在大學的最後一個學年,切比雪夫遞交了一篇題為“方程根的計算” (Вычисление корней урaвнений, 1841) 的論文,在其中提出了一種建立在反函式的級數展開式基礎之上的方程近似解法,因此獲得該年度系裡頒發的銀質獎章。
大學畢業之後,切比雪夫一面在莫斯科大學當助教,一面攻讀碩士學位。大約在此同時,他們家在卡盧加省的莊園因為災荒而破產了。切比雪夫不僅失去了父母方面的經濟支持,而且還要負擔兩個未成年的弟弟的部分教育費用。1843年,切比雪夫通過了碩士課程的考試,並在J. 劉維爾 (Liouville) 的《純粹與套用數學雜誌》(Journal des mathématiques pures et appliquées)上發表了一篇關於多重積分的文章。1844年,他又在L. 格列爾 (Grelle) 的同名雜誌 (Journal für die reine und angewandte Mathematik) 上發表了一篇討論泰勒級數收斂性的文章。1845年,他完成了碩士論文“試論機率論的基礎分析” (Опыт елементaрногоaнaлизa теории вероятностей, 1845) ,於次年夏天通過了答辯。
執教彼得堡
1846年,切比雪夫接受了彼得堡大學的助教職務,從此開始了在這所大學教書與研究的生涯。他的數學才幹很快就得到在這裡工作的B. Я. 布尼亞科夫斯基 (Буняковский) 和M. B. 奧斯特羅格拉茨基 (Острогрaдский) 這兩位數學前輩的賞識。1847年春天,在題為“關於用對數積分” (Об интегрировaнии с номошьюлогaрифмов, 1847) 的晉職報告中,切比雪夫徹底解決了奧斯特羅格拉茨基不久前才提出的一類代數無理函式的積分問題,他因此被提升為高等代數與數論講師。他在文章中提出的一個關於二項微分式積分的方法,今天可以在任何一本微積分教程之中找到。1849年5月27日,他的博士論文“論同餘式”(Теория срaвнений, 1849)在彼得堡大學通過了答辯,數天之後,他被告知榮獲彼得堡科學院的最高數學榮譽獎。切比雪夫於1850年升為副教授,1860年升為教授。1872年,在他到彼得堡大學任教25周年之際,學校授予他功勳教授的稱號。1882年,切比雪夫在彼得堡大學執教35年之後光榮退休。
35年間,切比雪夫教過數論、高等代數、積分運算、橢圓函式、有限差分、機率論、分析力學、傅立葉級數、函式逼近論、工程機械學等十餘門課程。他的講課深受學生們歡迎。A. M. 李雅普諾夫 (Ляпунов) 評論道:“他的課程是精練的,他不注重知識的數量,而是熱衷於向學生闡明一些最重要的觀念。他的講解是生動的、富有吸引力的,總是充滿了對問題和科學方法之重要意義的奇妙評論。”
切比雪夫是在機率論門庭冷落的年代從事這門學問的。他一開始就抓住了古典機率論中具有基本意義的問題,即那些“幾乎一定要發生的事件”的規律——大數定律。歷史上的第一個大數定律是由雅格布·伯努利(Bernoulli, Jacob I)提出來的,後來 S-D.B.泊松(Poisson)又提出了一個條件更寬的陳述,除此之外在這方面沒有什麼進展。相反,由於有些數學家過分強調機率論在倫理科學中的作用甚至企圖以此來闡明“隱蔽著的神的秩序”,又加上理論工具的不充分和古典機率定義自身的缺陷,當時歐洲一些正統的數學家往往把它排除在精密科學之外。
1845年,切比雪夫在其碩士論文中藉助十分初等的工具——ln(1+x)的麥克勞林展開式,對雅格布·伯努利大數定律作了精細的分析和嚴格的證明。一年之後,他又在格列爾的雜誌上發表了“機率論中基本定理的初步證明”(Démonstration èlèmentaired’une proposition génerale de la théorie des probabilités, 1846)一文,文中繼而給出了泊松形式的大數定律的證明。1866年,切比雪夫發表了“論平均數”(Oсредних величинaх,1866),進一步討論了作為大數定律極限值的平均數問題。1887年,他發表了更為重要的“關於機率的兩個定理”(Oдвух теоремaх относительно вероятностей,1887),開始對隨機變數和收斂到常態分配的條件,即中心極限定理進行討論。
切比雪夫引出的一系列概念和研究題材為俄國以及後來蘇聯的數學家繼承和發展。A.A.馬爾科夫(Мaрков)對“矩方法”作了補充,圓滿地解決了隨機變數的和按正態收斂的條件問題。李雅普諾夫則發展了特徵函式方法,從而引起中心極限定理研究向現代化方向上的轉變。以20世紀30年代A.H.柯爾莫哥洛夫(Колмогоров)建立機率論的公理體系為標誌,蘇聯在這一領域取得了無可爭辯的領先地位。近代極限理論——無窮可分分布律的研究也經C.H.伯恩斯坦(Бернштейн)、A.Я.辛欽(Хинчин)等人之手而臻於完善,成為切比雪夫所開拓的古典極限理論在20世紀抽枝發芽的繁茂大樹。關於切比雪夫在機率論中所引進的方法論變革的偉大意義,蘇聯著名數學家柯爾莫哥洛夫在“俄羅斯機率科學的發展”(Роль сусской нaуки в сaзвии теории вероятносгей,ИБИД,стр,53—64)一文中寫道:“從方法論的觀點來看,切比雪夫所帶來的根本變革的主要意義不在於他是第一個在極限理論中堅持絕對精確的數學家(A.棣莫弗(de Moivre)、P-S.拉普拉斯(Laplace)和泊松的證明與形式邏輯的背景是不協調的,他們不同於雅格布·伯努利,後者用詳盡的算術精確性證明了他的極限定理),切比雪夫的工作的主要意義在於他總是渴望從極限規律中精確地估計任何次試驗中的可能偏差並以有效的不等式表達出來。此外,切比雪夫是清楚地預見到諸如‘隨機變數’及其‘期望(平均)值’等概念的價值,並將它們加以套用的第一個人。這些概念在他之前就有了,它們可以從‘事件’和‘機率’這樣的基本概念導出,但是隨機變數及其期望值是能夠帶來更合適與更靈活的算法的課題。”
1856年,切比雪夫被任命為炮兵委員會的成員,積極地參與了革新炮兵裝備和技術的工作。他於1867年提出的一個計算圓形炮彈射程的公式很快被彈道專家所採用,他關於插值理論的研究也部分地來源於分析彈著點數據的需要。他在彼得堡大學教授聯席會上作的“論地圖製法”(Черченйе геогрaфических кaрт,1856)的報告精闢地分析了數學理論與實踐結合的意義,這份報告也詳盡討論了如何減少投影誤差的問題。在法國科學院第七次年會上,切比雪夫提出了一篇名為“論服裝裁剪”(Sur la coupe des vte-ments,1878)的論文,其中提出的“切比雪夫網”成了曲面論中的一個重要概念。