內容簡介
《分形幾何與流體》是瞿波在英國龍比亞大學攻讀博士的學位論文的核心成果,深入淺出地介紹了分形及其在流體中的套用,詳細論述了如何用分形中的分數布朗運動模擬流水中污染物的軌跡,包括對海灣和海洋中污染物傳播軌跡的模擬。是一本實用性強、淺顯易懂的套用數學學習和研究的參考用書。
圖書目錄
序
preface
List of Symbols
Chapter 1 Introduction
1. Fractals and Fractional Brownian Motion
2. Aim and Objectives
3. Structure of Thesis
Chapter 2 Diffusion and Dispersion in Fluids
1. Introduction
2. Molecular Diffusion: Fick's Law and the Diffusion Equation
3. Statistical Theory of Diffusion: Brownian Motion
4. Turbulent Diffusion
4.1 Introduction
4.2 Eddies
4.3 Taylor's Theorem
4.4 The Relationship Between Lagrangian and Eulerian Measurement
4.5 Relative Diffusion and Richardson's Law
4.6 Okubo's Oceanic Diffusion Diagrams
5. Shear Dispersion
5.1 Introduction
5.2 Taylor and Elder's Shear Dispersion Results
5.3 Dispersion in Rivers
5.4 Dispersion in the Sea
6. Numerical Model of Dispersion
6.1 Solution of the Advection-Diffusion Equation
6.2 The Disadvantage of Solving the Advection-Diffusion Equation
7. Traditional Particle Tracking Methods
8. Summary
Chapter 3 Brownian Motion, Fractional Brownian Motion and Fractal Geometry
1. Brownian Motion
1.1 The Definition of Brownian Motion
1.2 Two Simple Random Walks
1.3 Brownian Motion Generation
1.4 The Properties of a One-Dimensional Brownian Motion Time Trace
1.5 The Skewness and Kurtosis of Random Walks
1.6 Random Walks in Two Dimensions
1.7 The Last Steps of the Random Walks in Two Dimensions
2. Fractional Brownian Motion
2.1 Introduction
2.2 FBM Model
2.3 FBMINC Model
2.4 The Comparison of the FBM and FBMINC Models
2.5 FBM Plots in One Dimension
2.6 The Relationship Between Memory, M, Number of Steps, NSTEP, and Number of Particles, P
2.7 Fractional Brownian Motion in Two Dimensions
2.8 Projection of Two-Dimensional Fractional Brownian Motion
2.9 The Use of Simpler Probability Distributions to Reduce CPU Time
2.10 Long Term Fickian Behaviour
3. fBm as a Random Fractal Function
3.1 Fractal Geometry and Fractal Curves
3.2 Fractal Dimension
3.3 Fractal Properties of fBm
3.4 Methods for Determining H from Real Data
4. Summary
Chapter 4 Coastal Bay Modelling
1. Introduction
2. New Particle Tracking Method Using in the Bay
2.1 Advection
2.2 Diffusion
2.3 Choosing a Time Interval
2.4 Choosing a Diffusion Coefficient
2.5 Boundary Reflection
2.6 The Particle Tracking Model
2.7 Particle Clouds
2.8 Concentration Calculation and Plots
2.9 Further Reported Results
3. Shear Dispersion
3.1 Simple Shear Dispersion (Brownian Motion)
3.2 Shear Dispersion with Fractional Brownian Motion
3.3 Shear Dispersion in the Coastal Bay Model Recirculation Zone
4. Summary
Chapter 5 Simulation of Observed Coastal Dispersion
1. Introduction
2. Northumbrian Coastal Water Data Sets
3. Three Methods for Calculating the Standard Deviation of the Dye Patch Concentrations
3.1 The SQ-Method
3.2 The R-Method
3.3 The SR-Method
3.4 Estimation of the Direction of the Mean Advective Velocity Vector for Each Patch
4. Comparison of the Three Methods
4.1 The Reason for Introducing the SR-Method
4.2 Comparison of the Results Using the Three Methods
5. Accuracy of the Results
5.1 Sensitivity of the Centre
5.2 The Concentration Function Calculation
6. Simulation of the Observed Dye Patches Using an fBm Based Particle Tracking Model
6.1 The Accelerated Fractional Brownian Motion (AFBM) Model
6.2 Simulation Using the FBMINC and AFBM Models
6.3 Concentration Calculations
6.4 Contour Plots
7. Summary
Chapter 6 Conclutions, Discussion and Recommendations
1. Introduction
2. Achievement of Objectives
3. Discussion
4. Recommendations for Future Work
Appendix
brown. for
fbm. for
fbminc. for
bayflu. for
baycloud. for
concent. for
srb1. for
srbb1. for
sruvb1. for
afbm. for
References
postscript
作者簡介
瞿波,博士,江蘇南通人。1983年獲華東師範大學數學學士學位。1986年獲華東師範大學數學碩士學位。1992年赴英國愛丁堡龍比亞大學(Edinburgh Napier University)攻讀流體力學博士學位,研究方向是分形在流體中的套用,1999年獲博士學位(PhD degree),同年,在英國貝爾法斯特女王大學(Queen’s University of Belfast)做研究助理。2000年在香港大學(Hong Kong University)土木工程系做博士後。2003年在澳大利亞格里菲里斯大學(Griffith University)做研究員。2008年回國,在南通大學任教,是碩士生導師。承擔過國家自然科學基金(2012年度)“北極的生態系統和二甲基硫對當地氣候的影響”等多項研究課題。20年來致力於分形在流體力學中的套用研究,以及環境模型、水利模型等國際國內課題研究。熱衷於數學分形的普及推廣,有多項成果在《國際流體數值方法》等國際雜誌發表。