哈爾濱工業大學理學院教授/博士生導師。中國數學會會員,美國數學會會員,IEEE會員,ACM會員。
基本介紹
- 中文名:冉啟文
- 國籍:中國
- 出生地:重慶
- 出生日期:1963年4月
- 畢業院校:西南師範大學
- 性別:男
個人履歷,獲得獎項,研究方向,論著成果,學術論文(部分),獎項和專利(部分),
個人履歷
冉啟文於1983年畢業於西南師範大學(西南大學前身之一)數學系,並被分配到重慶大學任教。1985年考入哈爾濱工業大學數學系攻讀碩士學位,次年再次考入中國科學院套用數學研究所套用機率統計專業攻讀碩士學位。1988年取得理學碩士學位並進入哈爾濱工業大學任教。1995年晉升副教授,次年獲得套用數學專業碩士研究生導師資格,同年,考入哈爾濱工業大學計算機系計算機套用專業攻讀博士學位。1999年獲得博士學位後於次年進入哈爾濱工業大學電子科學與技術博士後流動站進行博士後研究工作。在此期間參與香港理工大學計算機系的聯合課題“分數傅立葉變換理論及套用”的研究。2002年博士後流動站出站,回到哈爾濱工業大學
數學系任教,次年獲得香港特別行政區政府資助再次與香港理工大學計算機系進行聯合課題研究,同年晉職哈爾濱工業大學教授,2004年獲得哈爾濱工業大學電子科學與技術一級學科物理電子學二級學科的博士生導師資格。
獲得獎項
工科數學現代教學技術研究與開發
教學成果獎 黑龍江省教學成果獎
2000.5 二等獎
研究生主幹課程"小波理論及套用"的教材和課程授課
教學成果獎 哈工大教學成果獎
2003.5 二等獎
研究方向
衛星雷射通信、信息光學、信息與通信理論、套用數學。二十多年來,主要的學術研究興趣是小波理論和分數傅立葉變換理論及其在光學、通信、圖像處理和信號處理等領域的套用,主持和參與完成十五項國家自然科學基金課題、省部和校級基金課題、863國家高技術研究課題、973國家重大基礎研究課題,獲得航天部科技進步獎一項,黑龍江省教學成果獎兩項,出版學術專著四部、教材一本,在國內外學術期刊正式發表學術研究論文四十餘篇。
論著成果
學術專著(部分)
[1] 冉啟文, 譚立英. 《分數傅立葉光學導論》. 科學出版社,2004年
[2] 冉啟文, 譚立英. 《小波分析與分數傅立葉變換及套用》. 國防工業出版社,2003年
[3] 冉啟文. 《小波變換與分數傅立葉變換理論及套用》. 哈爾濱工業大學出版社,2003年
[4] 冉啟文. 《小波理論及套用》. 哈爾濱工業大學出版社,1995年
學術論文(部分)
[1] Qiwen RAN, Daniel S. YEUNG, Eric C. C. TSANG and Qi WANG, General Multifractional Fourier Transform method based on the Generalized Permutation Matrix group, IEEE Transactions on signal processing, Vol. 53, No. 1, January 2005, pp. 83-98(IF:2.335)
[2] Qiwen RAN, Haiying Zhang, Jin Zhang, Liying Tan and Jing Ma, deficiencies of the encryptography based on multi-parameters fractional Fourier transform, Optics Letters, 34(11), 1729-1731(2009)(IF:3.772)
[3] Hui Zhao, Qi-Wen RAN, Jing Ma, and Li-Ying Tan. Generalized Prolate Spheroidal Wave Functions Associated with Linear Canonical Transform. IEEE Transaction on Signal Processing, Vol.58, No.6, pp.3032-3041, 2010(IF:2.335)
[4] Zhu B H, Liu S T and RAN Q W. optical image encryption based on multifractional Fourier transforms. Optics letters 2000,25(16) 1159-1161(IF:3.772)
[5] RAN qi-wen, Yuan lin, Tan li-ying, Ma jing and Wang qi, High order generalized permutational fractional Fourier transforms. Chinese Physics. 2004, 13(2): 178-186(IF:1.680)
[6] Yeung Daniel S, RAN Qiwen, Tsang Eric C C and Teo Kok Lay. Complete way to fractionalize Fourier transform. Optics Communications. 2004, 230: 55-57(IF:1.552)
[7] Hui Zhao, Qiwen RAN, Jing Ma and Liying Tan, On bandlimited signals associated with linear canonical transform, IEEE signal processing Letters, Vol. 16, No. 5, pp.343-345, May 2009(IF:1.203)
[8] Hui Zhao, Qiwen RAN, Liying Tan and Jing Ma. Reconstruction of bandlimited signals in linear canonical transform domain from finite nonuniformlu spaced samples, IEEE Signal Processing Letters, 16(12): 1047-1050, 2009(IF:1.203)
[9] Deyun Wei, Qiwen RAN, Yuanmin Li, Jing Ma and Liying Tan, A convolution and product theorem for the linear canonical transform, IEEE signal processing letters, Vol.16, No.10, 853-856, October 2009)(IF:1.203)
[10] Deyun Wei, Qiwen RAN, Yuanmin Li. Generalized Sampling Expansion for Bandlimited signals Associated with the Fractional Fourier Transform. IEEE Signal Processing Letters, 17(6),pp. 595-598, 2010(IF:1.203)
[11] Deyun Wei, Qiwen RAN, Yuanmin Li, Jing Ma and Liying Tan. Reply to “Comment on ‘A convolution and product theorem for the linear canonical transform’ ”. IEEE Signal Processing Letters, 17(6), pp. 617-618, 2010(IF:1.203)
[12] Qiwen RAN, Hui Zhao, Liying Tan and Jing Ma. Sampling of Bandlimited Signals in Fractional Fourier Transform Domain. Circuits, Systems, and Signal Processing, 29(3):459-467,2010
[13] Hui Zhao, Qi-Wen RAN, Jing Ma, and Li-Ying Tan. Linear canonical ambiguity function and linear canonical transform moments. Optik, In press, 2010
[14] Qiwen RAN, Hui Zhao, Guixia Ge, Jing Ma and Liying Tan. Sampling Theorem Associated with Multiple-Parameter Fractional Fourier Transform. Journal of Computers, 5(5):695-702, 2010
[15] RAN qi-wen, Wang qi, Ma jing and Tan li-ying. Multifractional Fourier Transform method and its Applications to Image Encryption. Chinese Journal of Electronics, 2003,12(1): 29-34(IF:0.148)
[16] RAN Q W, Feng Y J, Wang J Z and Wu Q T. The Discrete Fractional Fourier Transform and Its Simulation. Chinese Journal of Electronics 2000, 9(1) p. 70-75(IF:0.148)
[17] Zhang, Haiying, RAN, Qiwen, Zhang, Jin. Optical image encryption and multiple parameter weighted fractional fourier transform. Guangxue Xuebao/Acta Optica Sinica 28(2): 117-120, December 2008
[18] Qiwen RAN, Zhongzhao Zhang, Deyun Wei and Shaxue Jun. “Novel nearly tridiagonal commuting matrix and fractionalizations of generalized DFT matrix,” Electrical and Computer Engineering, 2009. CCECE '09. Canadian Conference on 3-6, Page(s):555–558, May 2009
[19] RAN, Qi-Wen, Zhang, Hai-Ying, Zhang, Zhong-Zhao, Sha, Xue-Jun. The analysis of the discrete fractional Fourier transform algorithms, 2009 Canadian Conference on Electrical and Computer Engineering, CCECE '09, 979-982, 2009
[20] Qiwen RAN, Hui Zhao, Guixia Ge, Jing Ma and Liying Tan. Sampling analysis in weighted fractional Fourier transform domain, Computational Sciences and Optimization, 2009. International Joint Conference on, 1: 878-881, Apr. 2009
獎項和專利(部分)
[1] 1995年獲得航天工業總公司科技進步三等獎1項
[2] 2008年獲國防科工委科技進步二等獎1項
[3] 2009年獲國家技術發明獎二等獎1項
[4] 獲得授權國家發明專利2項
[5] 獲得授權國防發明專利2項