《仿射微分幾何》內容簡介:仿射微分幾何是一門發展較早的學科。《仿射微分幾何》著者從20世紀20年代中期到30年代初期在這一學科中做了大量工作。《仿射微分幾何》充分反映了著者的研究工作成果,與國外同類著作相比,出發點和重點都不相同,顯示了我國數學家用自己特有的方法寫成的專著的特色。《仿射微分幾何》分為五章,其中最後一章是內容的重點。 《仿射微分幾何》可供大學數學系高年級學生、研究生、教師和以微分幾何為專業的數學工作者閱讀。
基本介紹
- 書名:仿射微分幾何
- 出版社:科學出版社
- 頁數:224頁
- 開本:16
- 品牌:科學出版社
- 作者:蘇步青
- 出版日期:1982年1月1日
- 語種:簡體中文
- ISBN:9787030293909, 7030293908
內容簡介
圖書目錄
第一章 概論
1.1 變換群與隸屬的幾何
1.2 仿射變換群和射影變換群
1.3 仿射平面曲線的基本定理
1.4 仿射空間曲線的基本定理
1.5 仿射空間曲面論大意
習題和定理
第二章 仿射平面曲線論中的若干整體問題
2.1 Blaschke不等式
2.2 Minkowski-B?hmer定理
2.3 六重點定理
2.4 橢圓彎曲的卵形線有關的兩個定理
2.5 橢圓的一個等周性質
2.6 Sylvester的三點問題
2.7 三角形的最大性質
習題和定理
第三章 仿射曲面論的幾何結構
3.1 Transon平面與仿射曲面法線的關係
3.2 Moutard織面
3.3 主切密切織面偶
3.4 ?ech變換蛹捌漵τ?
習題和定理
第四章 仿射鑄面與仿射旋轉面論
4.1 仿射鑄面及其變換
4.2 仿射旋轉面
4.3 一般化仿射鑄面與仿射旋轉面
4.4 仿射旋轉面的某些特徵
4.5 仿射旋轉面的新處理
4.6 仿射旋轉面的拓廣
習題和定理
第五章 仿射曲面論和射影曲面論間的若干關係
5.1 關於規範直線都成為仿射法線的曲面族的研究
5.2 第一類曲面 (k)
5.3 第二類曲面 (k)
5.4 主切等溫曲面 (-3)的表示
5.5 曲面 (1)
5.6 曲面 (-1)
5.7 曲面 (-1)的探討
習題和定理
附錄1 仿射曲面論中的Bonnet問題
1.1 關於Bonnet極小曲面的註記
1.2 關於一個具有二系平面仿射曲率線的曲面套用的解析條件
1.3 具有平面仿射曲率線的仿射極小曲面
1.4 在情況1o下的曲面
1.5 在情況2o下的曲面
附錄2 高維仿射空間仿射超鑄面與仿射超旋轉面
2.1 仿射超鑄面
2.2 仿射超旋轉面
2.3 具有不同頂點曲線的二仿射超鑄面的仿射可變形
參考書目
序言
儘管如此,這方面的發展見於專著的還是不多,著者有鑒於此,就不揣主觀片面之嫌,以上述Blaschke的著作為主要基礎,以著者1928年前後兩三年間的研究成果為主要內容,寫成本書,公之於世,具體地說,第一章和第二章的內容除了少數節段而外,都摘自Blaschke的原著,目的是要給讀者簡短扼要地介紹仿射微分幾何中的曲線和曲面論的概貌,也是為後面三章打下基礎之用的,從第二章的內容還可以看到現代整體微分幾何的濫觴,第三章是圍繞曲面在其正常點的一個四階錐面而寫成的,從中也闡明了仿射曲面論的幾何結構,特別是Moutard織面和Cech變換起著主要的作用,在第四章,著者根據自己的方式引進了仿射旋轉面論,它在高維仿射空間的拓廣則見於附錄2,必須指出:這個理論牽涉曲面的Darboux曲線之處,並為下一章提供研究基礎。