交通領域中的聚類分析方法研究

交通領域中的聚類分析方法研究

《交通領域中的聚類分析方法研究》是2014年科學出版社出版的圖書,作者是李桃迎。

基本介紹

  • 中文名:交通領域中的聚類分析方法研究
  • 外文名:Research on Clustering Algorithms in Traffic Domain
  • 作者:李桃迎
  • 語言:簡體中文
  • 出版時間:2014年3月1日
  • 出版社:科學出版社
  • 頁數:246 頁
  • ISBN:9787030399182 
  • 開本:5 開
內容簡介,作者簡介,圖書目錄,

內容簡介

《交通領域中的聚類分析方法研究》系統詳細地闡述了聚類分析的多種相關方法、技術及具體套用。主要內容包括:緒論,複雜多源異構數據整合方法研究,常用聚類分析方法,面向混合特徵的權熵模糊c-均值最佳化方法研究,面向混合屬性數據的聚類融合方法研究,基於聚類融合的混合屬性數據增量聚類方法研究,聚類分析方法在交通領域中的套用。
鑒於交通領域各系統的建設時期、開發部門、使用設備、技術發展階段以及能力水平都存在差異,導致“信息孤島”現象的出現,降低了工作的效率,妨礙了管理決策。筆者李桃迎在聚類分析方面潛心研究多年,尤其是近年來,通過參加國家自然科學基金委員會、科學技術部和交通運輸部及多個省(市)主辦的多項科研課題,深入研究了數據挖掘特別是聚類分析的理論、技術與方法,獲得多項科研成果。特別是面向交通運輸、物流管理等特色領域,開展基於聚類分析的創新性研究,在提高管理效率和挖掘效率方面取得了良好的社會效益與經濟效益。
聚類分析因其套用非常廣泛而成為數據挖掘研究的重要子領域,可為探索未知的數據結構提供幫助,並可作為一系列數據分析的起點,因此聚類分析成為本書的重要內容。《交通領域中的聚類分析方法研究》採用逐步演算和流程運行相結合的方式,力爭使廣大讀者通過本書的學習快速掌握聚類分析的理論、技術與方法。

作者簡介

李桃迎,女,博士,大連海事大學交通運輸管理學院副教授,曾作為第二主編撰寫《管理信息系統開發教程》、《數據挖掘與聚類分析》。主持遼寧省教育廳一般項目1項,企業委託項目1項;參與國家級、省(部、市)級項目多項;博士論文“交通領域中的聚類分析方法研究”獲得2012年遼寧省優秀博士學位論文;獲得省部級科技進步獎勵5項,發表相關學術論文40餘篇

圖書目錄

第1章緒論
1.1本書的撰寫目的及意義
1.2國內外研究現狀
1.3聚類分析的研究熱點問題
1.4聚類算法新的研究方向
1.5聚類分析的套用領域
1.6本書的主要內容
第2章複雜多源異構數據整合方法研究
2.1多源異構數據整合方法
2.2複雜多源異構數據整合的關鍵技術
2.3基於XML技術的航務海事異構數據整合框架
2.4本章小結
第3章數據預處理技術
3.1數據預處理
3.2數據清理
3.3數據集成和融合
3.4數據變換
3.5數據歸約
3.6本章小結
第4章常用聚類分析方法
4.1K—MEANS算法
4.2K—MEDOIDS算法
4.3CLIQUE算法
4.5灰色聚類
4.6基於模糊等價關係的聚類
4.7基於關鍵字搜尋的網頁聚類
4.8本章小結
第5章面向混合特徵的權熵模糊C—均值最佳化方法研究
5.1模糊聚類算法
5.2面向數值屬性數據的FCM算法改進算法
5.3面向混合屬性數據的權熵FCM算法最佳化算法
5.4基於WEFCM 算法的模糊關聯規則方法研究
5.5實例分析
5.6面向海事船舶等級劃分的權熵模糊C—均值聚類流程結構圖
5.7本章小結
第6章面向混合屬性數據的聚類融合方法研究
6.1聚類融合模型體系
6.2聚類融合方法研究
6.3實例分析
6.4面向交通事故成因分析的聚類融合框架體系
6.5本章小結
第7章基於聚類融合的混合屬性數據增量聚類方法研究
7.1增量聚類方法概述
7.2基於聚類融合的增量聚類方法
7.3實例分析
7.4幾種算法的對比分析
7.5面向海事船舶等級劃分的增量聚類流程圖
7.6本章小結
第8章聚類分析方法在交通領域中的套用
8.1聚類分析在交通領域的套用研究
8.2面向交通領域海事行業的數據整合方法套用研究
8.3基於模糊聚類的船舶等級劃分
8.4基於關聯規則的高速公路事故成因套用研究
8.5混合屬性FCM算法改進算法在物流商選擇中的套用
8.6基於模糊關聯規則的交通事故成因分析套用研究
8.7基於聚類融合的交通事故分析套用研究
8.8面向海事船舶劃分的增量聚類方法套用研究
8.9本章小結
第9章總結與展望
9.1研究總結
9.2展望
參考文獻
附錄A
附錄B

相關詞條

熱門詞條

聯絡我們