《五維Artin-Schelter正則代數的分類問題研究》是依託浙大寧波理工學院,由周貴松擔任項目負責人的青年科學基金項目。
基本介紹
- 中文名:五維Artin-Schelter正則代數的分類問題研究
- 項目類別:青年科學基金項目
- 項目負責人:周貴松
- 依託單位:浙大寧波理工學院
《五維Artin-Schelter正則代數的分類問題研究》是依託浙大寧波理工學院,由周貴松擔任項目負責人的青年科學基金項目。
項目主要研究了Artin-Schelter正則代數的分類問題和同調性質,討論了Artin-Schelter正則代數、Koszul型代數,Hopf代數,以及Calabi-Yau代數之間的聯繫等。項目總體上按計畫進行。我們完成了兩個生成元時, 雙分次意義下的整體維數5的Artin-Schelter 正則代數的完全分類:一方面我們給出了二十類5維Artin-Schelter正則代數,...
至今所分類出的很多Artin-Schelter正則代數的例子就不再具有這一特點,我們將這些分解式中不再每一項都是由一個次數生成的代數稱為非Koszul型代數。本課題以Artin-Schelter正則代數為原型,給出一些非Koszul型代數的模型,利用A無窮代數方法作為研究工具,解決非Koszul型代數僅利用同調方法而未能解決的問題。給出非...
項目在Artin-Schelter正則代數的分類方面的主要成果是:完成了兩個生成元時, 雙分次意義下的4維和5維Artin-Schelter 正則代數的分類.一方面我們給出了二十類5維Artin-Schelter正則代數,它們是雙分次意義下的完全分類,另一方面也在雙分次範圍內完全回答了挪威學者Floystad和Vatne的問題. 最終的成果還未正式發表...
給出了(不一定是諾特)Koszul AS正則代數的PBW形變的Nakayama自同構的計算方法. 建立了廣義smash積上的PBW形變理論, 這類廣義smash積代數包括有限特徵域上的辛反射代數、Hecke代數、Lusztig型代數等. 給出了一類5維Artin-Schelter正則代數的分類,以及一類5維Artin-Schelter正則代數上點摸的分類; 利用Hochschild...
Homogeneous PBW deformations for Artin-Schelter regular algebras, Bull. Aust. Math.8. Zhou Gui-Song, Lu Di-Ming, Artin-Schelter regular algebras of dimension five with two generators, J. Pure Appl. Alg.科研項目:1. 國家自然科學基金青年項目:五維Artin-Schelter正則代數的分類問題研究,主持。