《三維橢圓方程Cauchy問題的正則化方法》是依託西安電子科技大學,由馮曉莉擔任項目負責人的青年科學基金項目。
基本介紹
- 中文名:三維橢圓方程Cauchy問題的正則化方法
- 項目類別:青年科學基金項目
- 項目負責人:馮曉莉
- 依託單位:西安電子科技大學
《三維橢圓方程Cauchy問題的正則化方法》是依託西安電子科技大學,由馮曉莉擔任項目負責人的青年科學基金項目。
在這樣的研究背景下,本項目擬用一兩種正則化方法來研究三維柱形區域上變係數橢圓方程Cauchy問題,預期獲得穩定近似解,建立收斂性誤差估計,同時設計與理論相符的算法,用一些實例對理論結果進行數值模擬。結題摘要 近幾十年來橢圓方程Cauchy...
4.結合擬邊界值正則化方法對三維空間變係數二階橢圓方程Cauchy問題的數值方法進行了深入研究,給出了一種適用於大型計算,可以大幅度提高計算速度的新算法;5.通過使用一些非經典的正則化方法,在多個有相當難度的反問題研究中取得了可喜...
對後者,我們結合正則化方法,利用差分技巧將原問題轉化成橢圓方程Cauchy問題,並利用基本解方法進行求解。從而得到了一個有效、穩定的無格線方法。在本項目的支持下,我們完成了1篇SCI論文,另外一篇文章已投稿並在修改過程中。
由於項目進展順利和課題的自然延伸,我們還對幾個分數階偏微分方程的反問題展開了探索性研究,提出了新的磨光正則化方法,並套用Fourier截斷方法研究了半無界區域上的Cauchy問題,反初值問題、逆邊值問題等,這些研究有較大的前沿性;對...
Chapter 3 Uniqueness and Stability in the Cauchy Problem 3.! The backward parabolic equation 3.2 General Carleman estimates and the Cauchy problem 3.3 Elliptic and parabolic equations 3.4 Hyperbolic and Schrodinger equations...