《Quantum Statistics of Nonideal Plasmas非理想電漿的量子統計(影印版)》是2013年8月12日出版的圖書,作者是克倫普。
基本介紹
- 書名:Quantum Statistics of Nonideal Plasmas非理想電漿的量子統計(影印版)
- 作者:(德)克倫普(D.Kremp)
- ISBN:978-7-301-22710-7
- 頁數:544
- 定價:¥92.00
- 出版社:北京大學出版社
- 出版時間:2013-08-12
- 裝幀:平
- 開本:16開
- 書號:22710
- 版次:1
- 字數:647 千字
- 叢書名:中外物理學精品書系·引進系列
出版背景,章節目錄,作者簡介,
出版背景
本書討論強耦合Coulomb系統的統計理論。在對非理想電漿做介紹以後,本書給出了有效的計算方法--格林函式法。在這個基礎上,本書對介電性質、熱力學性質、輸運和弛豫性質等都做了系統闡述。特別地,本書仔細地探討了電漿環境中的束縛態的行為、電離動理學、密集部分電離氫的狀態方程等。另外,本書還導出了推廣的動力學方程以適用於很短的時間間隔。這些方程可以用於研究超快過程以及雷射場中的電漿。本書適合電漿物理、天體物理、雷射物理、核物理、統計物理領域的研究者和研究生閱讀。
章節目錄
1. Introduction
2. Introduction to the Physics of Nonideal Plasmas
2.1 The Microscopic and Statistical Description
of a Fully Ionized Plasma
2.2 Equilibrium Distribution Function.
Degenerate and Non-degenerate Plasmas
2.3 The Vlasov Equation
2.4 Dynamical Screening
2.5 Self-Energy and Stopping Power
2.6 Thermodynamic Properties of Plasmas.
The Plasma Phase Transition
2.7 Bound States in Dense Plasmas.
Lowering of the Ionization Energy
2.8 Ionization Equilibrium and Saha Equation.
The Mott-Transition
2.9 The Density–Temperature Plane
2.10 Boltzmann Kinetic Equation
2.11 Transport Properties
2.12 Ionization Kinetics
3. Quantum Statistical Theory
of Charged Particle Systems
3.1 Quantum Statistical Description of Plasmas
3.2 Method of Green’s Functions
3.2.1 Correlation Functions and Green’s Functions
3.2.2 Spectral Representations and Analytic Properties
of Green’s Functions
3.2.3 Analytical Properties, Dispersion Relations
3.3 Equations of Motion for Correlation Functions
and Green’s Functions
3.3.1 The Martin–Schwinger Hierarchy
3.3.2 The Hartree–Fock Approximation
3.3.3 Functional Form
of the Martin–Schwinger Hierarchy
3.3.4 Self-Energy and Kadanoff–Baym Equations
3.3.5 Structure and Properties of the Self-Energy.
Initial Correlation
3.3.6 Gradient Expansion. Local Approximation
3.4 Green’s Functions and Physical Properties
3.4.1 The Spectral Function. Quasi-Particle Picture
3.4.2 Description of Macroscopic Quantities
4. Systems with Coulomb Interaction
4.1 Screened Potential and Self-Energy
4.2 General Response Functions
4.3 The Kinetics of Particles and Screening.
Field Fluctuations
4.4 The Dielectric Function of the Plasma.
General Properties, Sum Rules
4.5 The Random Phase Approximation (RPA)
4.5.1 The RPA Dielectric Function
4.5.2 Limiting Cases. Quantum and Classical Plasmas
4.5.3 The Plasmon–Pole Approximation
4.6 Excitation Spectrum, Plasmons
4.7 Fluctuations, Dynamic Structure Factor
4.8 Static Structure Factor
and Radial Distribution Function
4.9 Dielectric Function Beyond RPA
4.10 Equations of Motion for Density–Density Correlation
Functions. Schrodinger Equation for Electron–Hole Pairs
4.11 Self-Energy in RPA. Single-Particle Spectrum
5. Bound and Scattering States in Plasmas.
Binary Collision Approximation
5.1 Two-Time Two-Particle Green’s Function
5.2 Bethe–Salpeter Equation
in Dynamically Screened Ladder Approximation
5.3 Bethe–Salpeter Equation
for a Statically Screened Potential
5.4 Effective Schr¨odinger Equation. Bilinear Expansion
5.5 The T-Matrix
5.6 Two-Particle Scattering in Plasmas. Cross Sections
5.7 Self-Energy and Kadanoff–Baym Equations
in Ladder Approximation
5.8 Dynamically Screened Ladder Approximation
5.9 The Bethe–Salpeter Equation in Local Approximation.
Thermodynamic Equilibrium
5.10 Perturbative Solutions. Effective Schrodinger Equation
5.11 Numerical Results
6. Thermodynamics of Nonideal Plasmas
6.1 Basic Equations
6.2 Screened Ladder Approximation
6.3 Ring Approximation for the EOS.
Montroll–Ward Formula
6.3.1 General Relations
6.3.2 The Low Density Limit (Non-degenerate Plasmas)
6.3.3 High Density Limit. Gell-Mann–Brueckner Result
6.3.4 Pad′e Formulae for Thermodynamic Functions
6.4 Next Order Terms
6.4.1 e4-Exchange and e6-Terms
6.4.2 Beyond Montroll–Ward Terms
6.5 Equation of State in Ladder Approximation. Bound States
6.5.1 Ladder Approximations of the EOS.
Cluster Coefficients
6.5.2 Bound States. Levinson Theorem
6.5.3 The Second Virial Coefficient for Systems
of Charged Particles
6.5.4 Equation of State
in Dynamically Screened Ladder Approximation
6.5.5 Density Expansion of Thermodynamic Functions
of Non-degenerate Plasmas
6.5.6 Bound States and Chemical Picture.
Mott Transition
6.6 Thermodynamic Properties of the H-Plasma
6.6.1 The Hydrogen Plasma
6.6.2 Fugacity Expansion of the EOS.
From Physical to Chemical Picture
6.6.3 The Low-Density H-Atom Gas
6.6.4 Dense Fluid Hydrogen
6.7 The Dense Partially Ionized H-Plasma
7. Nonequilibrium Nonideal Plasmas
7.1 Kadanoff–Baym Equations.
Ultra-fast Relaxation in Dense Plasmas
7.2 The Time-Diagonal Kadanoff–Baym Equation
7.3 The Quantum Landau Equation
7.4 Dynamical Screening,
Generalized Lenard–Balescu Equation
7.5 Particle Kinetics and Field Fluctuations.
Plasmon Kinetics
7.6 Kinetic Equation in Ladder Approximation.
Boltzmann Equation
7.7 Bound States in the Kinetic Theory 7.7.1 Bound States and Off-Shell Contributions
7.7.2 Kinetic Equations
in Three-Particle Collision Approximation
7.7.3 The Weak Coupling Approximation.
Lenard–Balescu Equation for Atoms
7.8 Hydrodynamic Equations
8. Transport and Relaxation Processes
in Nonideal Plasmas
8.1 Rate Equations and Reaction Rates
8.1.1 T-Matrix Expressions for the Rate Coefficients
8.1.2 Rate Coefficients and Cross Sections
8.1.3 Two-Particle States, Atomic Form Factor
8.1.4 Density Effects in the Cross Sections
8.1.5 Rate Coefficients for Hydrogen
and Hydrogen-Like Plasmas
8.1.6 Dynamical Screening
8.2 Relaxation Processes
8.2.1 Population Kinetics in Hydrogen
and Hydrogen-Like Plasmas
8.2.2 Two-Temperature Plasmas
8.2.3 Adiabatically Expanding Plasmas
8.3 Quantum Kinetic Theory of the Stopping Power
8.3.1 Expressions for the Stopping Power
of Fully Ionized Plasmas
8.3.2 T-Matrix Approximation and Dynamical Screening
8.3.3 Strong Beam–Plasma Correlations. Z Dependence
8.3.4 Comparison with Numerical Simulations
8.3.5 Energy Deposition in the Target Plasma
8.3.6 Partially Ionized Plasmas
9. Dense Plasmas in External Fields
9.1 Plasmas in Electromagnetic Fields
9.1.1 Kadanoff–Baym Equations
9.1.2 Kinetic Equation for Plasmas in External
Electromagnetic Fields
9.1.3 Balance Equations. Electrical Current
and Energy Exchange
9.1.4 Plasmas in Weak Laser Fields.
Generalized Drude Formula
9.1.5 Absorption and Emission of Radiation
in Weak Laser Fields
9.1.6 Plasmas in Strong Laser Fields. Higher Harmonics
9.1.7 Collisional Absorption Rate in Strong Fields
9.1.8 Results for the Collision Frequency
9.1.9 Effects of Strong Correlations
9.2 The Static Electrical Conductivity
9.2.1 The Relaxation Effect
9.2.2 Lorentz Model with Dynamic Screening,
Structure Factor
9.2.3 Chapman–Enskog Approach to the Conductivity
9.2.4 Partially Ionized Hydrogen Plasma
9.2.5 Nonideal Alkali Plasmas
9.2.6 Dense Metal Plasmas
作者簡介
德國羅斯托克大學教授