示例
int foo(void) { int a = 24; int b = 25; /* 賦值給一個無用的變數*/ int c; c = a << 2; return c; b = 24; /* 不會被執行到的程式碼*/ return 0; }
分析上述程式對於數值的使用,將會發現b的數值在第一次被賦值之後,就不再使用,而且b是在foo函式內宣告,無法在函式外面使用,所以變數b是無用的,最最佳化的過程可以回收他所使用的空間,並刪除他的初始化。
當第一個return被運行,則代表函式已經結束,之後變數b的賦值行為則不會被運行,所以賦值行為是可以被刪除的。如果程式有更複雜的控制流程,例如在第一個return之後加上一個標籤,使得程式中任和一個地方都可以用goto來運行到這個程式段,那么變數b的賦值行為將有可能被運行。
儘管一些計算行為被包裝成函式,他們的數值也無法被函式外所訪問,但仍然還是有些函式僅會回傳一個固定的數值,這或許可以將該數值取代所有函式的調用。(這個簡化的過程被稱之為
常量摺疊)
更高級的編譯器則會有些選項可以啟動死碼刪除的功能,而有些則是可以選擇不同檔次的死碼刪除,比較低級檔次的死碼刪除僅會移除不會被運行到的指令,而較高級的可能不會保留無用變數的空間,其他高級檔次的做法可能會判斷哪些指令及函式沒有任何用途,並且刪除他們。
死碼刪除最普遍的做法,是通過
預處理器來判斷代碼是否需要被編譯,如下列這個示例:
int main(void) { int a = 5; int b = 6; int c; c = a * (b >> 1); if (0) { /* DEBUG */ printf("%d\n", c); } return c; }
由於0將永遠被視為False,所以if判斷式內的程式將永遠不會被運行,死碼刪除將會把它移除,這個技術在
調試上相當常見,我們可以通過一個數值來決定程式段是否該被編譯,使用死碼刪除的最最佳化過程,將會使用
預處理器來進行相同的工作。
實現中,有些在最最佳化過程中找到的死碼,是被其他最最佳化技術產生,舉例來說,典型
強度折減的技術,將會在代碼內插入新的運算以取代昂貴的運算行為,而被取代的代碼就成了死碼,隨後,死碼刪除會移除那些計算,以完成這個效果(沒有複雜的強度折減算法)。
從歷史上來看,死碼刪除使用來自數據流分析的信息,Cytron et al在原始文章中發布了一個基於
靜態單賦值形式的算法,Shillingsburg改進了這個算法,並開發了一個算法來移除無用的控制流(Control-flow)。
動態死碼刪除
死碼通常被視為無條件的(unconditionally),所以我們可以在編譯時期通過死碼刪除來移除這些無用的代碼。
然而,在實現上,只有在特定的情形才會標註一個代碼區塊是無用的,或是不會運行到的,這可能無法在編譯時期所得知。例如在不同的運行環境有不同的結果(舉例來說,目標環境可能會有不同的作業系統版本,或是不同的驅動程式及可用服務的組合),可能會在代碼內要求不同特例的集合,同時在這些案例下就變成有條件的死碼。然而,軟體(例如驅動程式、或是常駐服務)可能會根據用戶的設定,而配置或排除特定的功能,使得在一些特定的情境,會變成部分無用的死碼。模組化軟體實現方式,是在需要時才讀取動態庫,在多數的案例中,不可能僅從特定的庫讀取相關的程式,它仍然會包含一些程式片段,在特定的環境下是可被視為死碼,但是這在編譯時期是無法被排除的。
動態死碼刪除(dynamic dead code elimination)被使用在運行時動態偵測,可辨識及解析相依性,用以移除有條件的死碼,在運行時期重新組合保留的代碼。
多數的電腦語言、編譯器、作業系統不提供,或是僅比動態讀取庫及後連結(late linking)提供多一點點的功能,能使用動態死碼刪除的軟體是相當稀少的。