CPU存儲器

CPU存儲器

CPU存儲器是微處理器中存放數據和各種程式的裝置。CPU存儲器是微處理器的一個重要的組成部分,由存儲單元集合體,地址暫存器解碼驅動電路。讀出放大器以及時序控制電路等幾部分組成。

基本介紹

  • 中文名:CPU存儲器
  • 外文名:CPU memory
  • 別名:記憶裝置
  • 來自:微處理器
  • 用途:存放數據
數據暫存器,變址暫存器,指針暫存器,段暫存器,指令暫存器,標誌暫存器,

數據暫存器

數據暫存器主要用來保存運算元和運算結果等信息,從而節省讀取運算元所需占用匯流排和訪問存儲器的時間。
32位CPU有4個32位的通用暫存器EAX、EBX、ECX和EDX。對低16位數據的存取,不會影響高16位的數據。這些低16位暫存器分別命名為:AX、BX、CX和DX,它和先前的CPU中的暫存器相一致。
4個16位暫存器又可分割成8個獨立的8位暫存器(AX:AH-AL、BX:BH-BL、CX:CH-CL、DX:DH-DL),每個暫存器都有自己的名稱,可獨立存取。程式設計師可利用數據暫存器的這種“可分可合”的特性,靈活地處理字/位元組的信息。
暫存器AX和AL通常稱為累加器(Accumulator),用累加器進行的操作可能需要更少時間。累加器可用於乘、除、輸入/輸出等操作,它們的使用頻率很高;
暫存器BX稱為基地址暫存器(Base Register)。它可作為存儲器指針來使用;
暫存器CX稱為計數暫存器(Count Register)。在循環和字元串操作時,要用它來控制循環次數;在位操作中,當移多位時,要用CL來指明移位的位數;
暫存器DX稱為數據暫存器(Data Register)。在進行乘、除運算時,它可作為默認的運算元參與運算,也可用於存放I/O的連線埠地址
在16位CPU中,AX、BX、CX和DX不能作為基址和變址暫存器來存放存儲單元的地址,但在32位CPU中,其32位暫存器EAX、EBX、ECX和EDX不僅可傳送數據、暫存數據保存算術邏輯運算結果,而且也可作為指針暫存器,所以,這些32位暫存器更具有通用性。詳細內容請見第3.8節——32位地址的定址方式

變址暫存器

32位CPU有2個32位通用暫存器ESI和EDI。其低16位對應先前CPU中的SI和DI,對低16位數據的存取,不影響高16位的數據。
暫存器ESI、EDI、SI和DI稱為變址暫存器(Index Register),它們主要用於存放存儲單元在段內的偏移量,用它們可實現多種存儲器運算元定址方式(在第3章有詳細介紹),為以不同的地址形式訪問存儲單元提供方便。
變址暫存器不可分割成8位暫存器。作為通用暫存器,也可存儲算術邏輯運算的運算元和運算結果。
它們可作一般的存儲器指針使用。在字元串操作指令的執行過程中,對它們有特定的要求,而且還具有特殊的功能。具體描述請見第5.2.11節。

指針暫存器

32位CPU有2個32位通用暫存器EBP和ESP。其低16位對應先前CPU中的SBP和SP,對低16位數據的存取,不影響高16位的數據。
指針暫存器不可分割成8位暫存器。作為通用暫存器,也可存儲算術邏輯運算的運算元和運算結果。
它們主要用於訪問堆疊內的存儲單元,並且規定:
BP為基指針(Base Pointer)暫存器,用它可直接存取堆疊中的數據;
SP為堆疊指針(Stack Pointer)暫存器,用它只可訪問棧頂。

段暫存器

段暫存器是根據記憶體分段的管理模式而設定的。記憶體單元的物理地址由段暫存器的值和一個偏移量組合而成的,這樣可用兩個較少位數的值組合成一個可訪問較大物理空間的記憶體地址
CPU內部的段暫存器
CS——代碼段暫存器(Code Segment Register),其值為代碼段的段值;
DS——數據段暫存器(Data Segment Register),其值為數據段的段值;
ES——附加段暫存器(Extra Segment Register),其值為附加數據段的段值;
SS——堆疊段暫存器(Stack Segment Register),其值為堆疊段的段值;
FS——附加段暫存器(Extra Segment Register),其值為附加數據段的段值;
GS——附加段暫存器(Extra Segment Register),其值為附加數據段的段值。
在16位CPU系統中,它只有4個段暫存器,所以,程式在任何時刻至多有4個正在使用的段可直接訪問;在32位微機系統中,它有6個段暫存器,所以,在此環境下開發的程式最多可同時訪問6個段。
32位CPU有兩個不同的工作方式:實方式和保護方式。在每種方式下,段暫存器的作用是不同的。有關規定簡單描述如下:
實方式: 前4個段暫存器CS、DS、ES和SS與先前CPU中的所對應的段暫存器的含義完全一致,記憶體單元的邏輯地址仍為“段值:偏移量”的形式。為訪問某記憶體段內的數據,必須使用該段暫存器和存儲單元的偏移量。
保護方式: 在此方式下,情況要複雜得多,裝入段暫存器的不再是段值,而是稱為“選擇子”(Selector)的某個值。段暫存器的具體作用在此不作進一步介紹了,有興趣的讀者可參閱其它科技資料。

指令暫存器

32位CPU把指令指針擴展到32位,並記作EIP,EIP的低16位與先前CPU中的IP作用相同。
指令指針EIP、IP(Instruction Pointer)是存放下次將要執行的指令在代碼段偏移量。用來提供指令在存儲器中的地址。在具有預取指令功能的系統中,下次要執行的指令通常已被預取到指令佇列中,除非發生轉移情況。所以,在理解它們的功能時,不考慮存在指令佇列的情況。
在實方式下,由於每個段的最大範圍為64K,所以,EIP中的高16位肯定都為0,此時,相當於只用其低16位的IP來反映程式中指令的執行次序。

標誌暫存器

一、運算結果標誌位
1、進位標誌CF(Carry Flag)
進位標誌CF主要用來反映運算是否產生進位或借位。如果運算結果的最高位產生了一個進位或借位,那么,其值為1,否則其值為0。
使用該標誌位的情況有:多字(位元組)數的加減運算,無符號數的大小比較運算,移位操作,字(位元組)之間移位,專門改變CF值的指令等。
2、奇偶標誌PF(Parity Flag)
奇偶標誌PF用於反映運算結果中“1”的個數的奇偶性。如果“1”的個數為偶數,則PF的值為1,否則其值為0。
利用PF可進行奇偶校驗檢查,或產生奇偶校驗位。在數據傳送過程中,為了提供傳送的可靠性,如果採用奇偶校驗的方法,就可使用該標誌位。
3、輔助進位標誌AF(Auxiliary Carry Flag)
在發生下列情況時,輔助進位標誌AF的值被置為1,否則其值為0:
(1)、在字操作時,發生低位元組向高位元組進位或借位時;
(2)、在位元組操作時,發生低4位向高4位進位或借位時。
對以上6個運算結果標誌位,在一般編程情況下,標誌位CF、ZF、SF和OF的使用頻率較高,而標誌位PF和AF的使用頻率較低。
4、零標誌ZF(Zero Flag)
零標誌ZF用來反映運算結果是否為0。如果運算結果為0,則其值為1,否則其值為0。在判斷運算結果是否為0時,可使用此標誌位。
5、符號標誌SF(Sign Flag)
符號標誌SF用來反映運算結果的符號位,它與運算結果的最高位相同。在微機系統中,有符號數採用補碼錶示法,所以,SF也就反映運算結果的正負號。運算結果為正數時,SF的值為0,否則其值為1。
6、溢出標誌OF(Overflow Flag)
溢出標誌OF用於反映有符號數加減運算所得結果是否溢出。如果運算結果超過當前運算位數所能表示的範圍,則稱為溢出,OF的值被置為1,否則,OF的值被清為0。
“溢出”和“進位”是兩個不同含義的概念,不要混淆。如果不太清楚的話,請查閱《計算機組成原理》課程中的有關章節。
二、狀態控制標誌位
狀態控制標誌位是用來控制CPU操作的,它們要通過專門的指令才能使之發生改變。
1、追蹤標誌TF(Trap Flag)
當追蹤標誌TF被置為1時,CPU進入單步執行方式,即每執行一條指令,產生一個單步中斷請求。這種方式主要用於程式的調試。
指令系統中沒有專門的指令來改變標誌位TF的值,但程式設計師可用其它辦法來改變其值。
2、中斷允許標誌IF(Interrupt-enable Flag)
中斷允許標誌IF是用來決定CPU是否回響CPU外部的可禁止中斷發出的中斷請求。但不管該標誌為何值,CPU都必須回響CPU外部的不可禁止中斷所發出的中斷請求,以及CPU內部產生的中斷請求。具體規定如下:
(1)、當IF=1時,CPU可以回響CPU外部的可禁止中斷發出的中斷請求
(2)、當IF=0時,CPU不回響CPU外部的可禁止中斷發出的中斷請求。
CPU的指令系統中也有專門的指令來改變標誌位IF的值。
3、方向標誌DF(Direction Flag)
方向標誌DF用來決定在串操作指令執行時有關指針暫存器發生調整的方向。具體規定在第5.2.11節——字元串操作指令——中給出。在微機的指令系統中,還提供了專門的指令來改變標誌位DF的值。
三、32位標誌暫存器增加的標誌位
1、I/O特權標誌IOPL(I/O Privilege Level)
I/O特權標誌用兩位二進制位來表示,也稱為I/O特權級欄位。該欄位指定了要求執行I/O指令的特權級。如果當前的特權級別在數值上小於等於IOPL的值,那么,該I/O指令可執行,否則將發生一個保護異常。
2、嵌套任務標誌NT(Nested Task)
嵌套任務標誌NT用來控制中斷返回指令IRET的執行。具體規定如下:
(1)、當NT=0,用堆疊中保存的值恢復EFLAGS、CS和EIP,執行常規的中斷返回操作;
(2)、當NT=1,通過任務轉換實現中斷返回。
3、重啟動標誌RF(Restart Flag)
重啟動標誌RF用來控制是否接受調試故障。規定:RF=0時,表示“接受”調試故障,否則拒絕之。在成功執行完一條指令後,處理機把RF置為0,當接受到一個非調試故障時,處理機就把它置為1。
4、虛擬8086方式標誌VM(Virtual 8086 Mode)
如果該標誌的值為1,則表示處理機處於虛擬的8086方式下的工作狀態,否則,處理機處於一般保護方式下的工作狀態。

相關詞條

熱門詞條

聯絡我們