黃金比例,又稱黃金分割點,是一個數學常數,一般以希臘字母Ф表示。這也是黃金比例一名的由來。 黃金比例是無理數,而大約值則為(小數點後20位):0.61803398874989484820
套用時一般取0.618:1。
黃金分割具有嚴格的比例性、藝術性、和諧性,蘊藏著豐富的美學價值,而且呈現於不少動物和植物的外觀。現今很多工業產品、電子產品、建築物或藝術品均普遍套用黃金分割,展現其功能性與美觀性。
基本介紹
- 中文名:黃金比
- 外文名:Golden ratio
- 表達式:(√5-1)/2
- 提出者:畢達哥拉斯學派
- 提出時間:公元前7世紀
- 適用領域範圍:工業產品、電子產品、建築物或藝術品
- 適用領域範圍:建築設計、服裝設計、繪畫創作等
發現歷史,黃金分割,黃金比的套用,
發現歷史
由於公元14世紀古希臘的畢達哥拉斯學派研究過正五邊形和正十邊形的作圖,因此現代數學家們推斷當時畢達哥拉斯學派已經觸及甚至掌握了黃金分割。
公元16世紀,古希臘數學家歐多克索斯第一個系統研究了這一問題,並建立起比例理論。
公元前300年前後歐幾里得撰寫《幾何原本》時吸收了歐多克索斯的研究成果,進一步系統論述了黃金分割,成為最早的有關黃金分割的論著。
中世紀後,黃金分割被披上神秘的外衣,義大利數學家帕喬利稱中末比為神聖比例,並專門為此著書立說。德國天文學家克卜勒稱黃金分割為神聖分割。
到19世紀黃金分割這一名稱才逐漸通行。黃金分割數有許多有趣的性質,人類對它的實際套用也很廣泛。最著名的例子是優選學中的黃金分割法或0.618法,是由美國數學家基弗於1953年首先提出的,70年代在中國推廣。
|..........a...........|
+-------------+--------+ -
| | | .
| | | .
| B | A | b
| | | .
| | | .
| | | .
+-------------+--------+ -
|......b......|..a-b...|
通常用希臘字母Φ 表示這個值。
黃金分割奇妙之處,在於其比例與其倒數是一樣的。例如:1.618的倒數是0.618,而1.618:1與1:0.618是一樣的。
確切值為根號5減1再除以2
黃金分割數是無理數,前面的1024位為:
0.6180339887 4989484820 4586834365 6381177203 0917980576
2862135448 6227052604 6281890244 9707207204 1893911374
8475408807 5386891752 1266338622 2353693179 3180060766
7263544333 8908659593 9582905638 3226613199 2829026788
0675208766 8925017116 9620703222 1043216269 5486262963
1361443814 9758701220 3408058879 5445474924 6185695364
8644492410 4432077134 4947049565 8467885098 7433944221
2544877066 4780915884 6074998871 2400765217 0575179788
3416625624 9407589069 7040002812 1042762177 1117778053
1531714101 1704666599 1466979873 1761356006 7087480710
1317952368 9427521948 4353056783 0022878569 9782977834
7845878228 9110976250 0302696156 1700250464 3382437764
8610283831 2683303724 2926752631 1653392473 1671112115
8818638513 3162038400 5222165791 2866752946 5490681131
7159934323 5973494985 0904094762 1322298101 7261070596
1164562990 9816290555 2085247903 5240602017 2799747175
3427775927 7862561943 2082750513 1218156285 5122248093
9471234145 1702237358 0577278616 0086883829 5230459264
7878017889 9219902707 7690389532 1968198615 1437803149
9741106926 0886742962 2675756052 3172777520 3536139362
1076738937 6455606060 5922
早在兩千多年前,古希臘數學家歐多克斯就發現:如果將一個長度分割成大小兩段,若小段與大段的長度之比等於大段的長度與全長之比,那么這一比值等於0.618,人稱“黃金分割”。現代科學研究表明,0.618的位置經常成為自然界乃至生活的最佳狀態。
稍微留心一下你會發現,節目主持人站在舞台長約占0.618的位置,會更顯風采,若站在正中間,反而會顯得呆板。一個體態勻稱的人,膝蓋到腳趾與肚臍到腳底的長度之比也為0.618。
有趣的是,人們認為樂曲也有“黃金分割”。數學家對莫扎特的樂曲做過分析:莫扎特的每一段鋼琴協奏曲都可以分成兩大部分,顯示部和展開——再現部。如果計算一下節拍次數,其第一部分和第二部分節拍數的比幾乎與黃金分割完全一致。
0.618也可以用於健康長壽方面。人的正常體溫為37℃,與0.618的乘積為22.8℃,因此人在環境溫度為22℃至24℃時感覺最舒適,這時肌體的新陳代謝、生理節奏和生理功能處於最佳狀態。人的動與靜也應該保持0.618的比例關係,大致四分動、六分靜,這是最佳的養生和長壽之道。
做一個RT三角形ABC,直邊AC的長度是直邊AB的一半,以C為圓心,AC為半徑,做圓交BC於D,以B為圓心,BD為半徑做圓交AB於E,BE與AB之比即為黃金分割。筆值可計算出,為
[5^(1/2)-1]/2≈0.618
記住0.618就可以了.這個精度足夠用了.
就像圓周率一樣,一般情況下記到3.14就可以了,在工程上也不過用到3.1415926.只有航空航天等領域才可能用到小數點後幾十位幾百位.
0.618是錯誤的,正確的是(根號打不出來,我用文字表達)
根號5,然後整個減1,最後整個除以2
大概就是這個形式,根號不清楚,湊合著看,根據描述寫一次
(√5-1)/2
的確,一般不用太精確的,記住
就可以了,如果想要精確的,可以按照上面他們說的方法計算。
這裡給出一個比較精確的數值:
0.61803398874989484820458683436564
黃金分割
舉例
把一條線段分割為兩部分,使其中一部分與全長之比等於另一部分與這部分之比。其比值是一個無理數,取其前三位數字的近似值是0.618。由於按此比例設計的造型十分美麗,因此稱為黃金分割,也稱為中外比。這是一個十分有趣的數字,我們以0.618來近似,通過簡單的計算就可以發現:
1/0.618=1.618
(1-0.618)/0.618=0.618
這個數值的作用不僅僅體現於諸如繪畫、雕塑、音樂、建築等藝術領域,而且在管理、工程設計等方面也有著不可忽視的作用。
讓我們首先從一個數列開始,它的前面幾個數是:1、1、2、3、5、8、13、21、34、55、89、144…..這個數列的名字叫做"斐波那契數列",這些數被稱為"菲斐波那契數"。特點是除前兩個數(數值為1)之外,每個數都是它前面兩個數之和。
菲波那契數列與黃金分割有什麼關係呢?經研究發現,相鄰兩個菲波那契數的比值是隨序號的增加而逐漸趨於黃金分割比的。即f(n)/f(n-1)-→0.618…。由於菲波那契數都是整數,兩個整數相除之商是有理數,所以只是逐漸逼近黃金分割比這個無理數。但是當我們繼續計算出後面更大的菲波那契數時,就會發現相鄰兩數之比確實是非常接近黃金分割比的。
一個很能說明問題的例子是五角星/正五邊形。五角星是非常美麗的,我們的國旗上就有五顆,還有不少國家的國旗也用五角星,這是為什麼?因為在五角星中可以找到的所有線段之間的長度關係都是符合黃金分割比的。正五邊形對角線連滿後出現的所有三角形,都是黃金分割三角形。
由於五角星的頂角是36度,這樣也可以得出黃金分割的數值為2Sin18 。
黃金分割點約等於0.618:1
是指分一線段為兩部分,使得原來線段的長跟較長的那部分的比為黃金分割的點。線段上有兩個這樣的點。
利用線段上的兩黃金分割點,可作出正五角星,正五邊形。
2000多年前,古希臘雅典學派的第三大算學家歐道克薩斯首先提出黃金分割。所謂黃金分割,指的是把長為L的線段分為兩部分,使其中一部分對於全部之比,等於另一部分對於該部分之比。而計算黃金分割最簡單的方法,是計算斐波那契數列1,1,2,3,5,8,13,21,...後二數之比2/3,3/5,5/8,8/13,13/21,...近似值的。
黃金分割在文藝復興前後,經過阿拉伯人傳入歐洲,受到了歐洲人的歡迎,他們稱之為"金法",17世紀歐洲的一位數學家,甚至稱它為"各種算法中最可寶貴的算法"。這種算法在印度稱之為"三率法"或"三數法則",也就是我們常說的比例方法。
其實有關"黃金分割",我國也有記載。雖然沒有古希臘的早,但它是我國古代數學家獨立創造的,後來傳入了印度。經考證。歐洲的比例算法是源於我國而經過印度由阿拉伯傳入歐洲的,而不是直接從古希臘傳入的。
因為它在造型藝術中具有美學價值,在工藝美術和日用品的長寬設計中,採用這一比值能夠引起人們的美感,在實際生活中的套用也非常廣泛,建築物中某些線段的比就科學採用了黃金分割,舞台上的報幕員並不是站在舞台的正中央,而是偏在台上一側,以站在舞台長度的黃金分割點的位置最美觀,聲音傳播的最好。就連植物界也有採用黃金分割的地方,如果從一棵嫩枝的頂端向下看,就會看到葉子是按照黃金分割的規律排列著的。在很多科學實驗中,選取方案常用一種0.618法,即優選法,它可以使我們合理地安排較少的試驗次數找到合理的西方和合適的工藝條件。正因為它在建築、文藝、工農業生產和科學實驗中有著廣泛而重要的套用,所以人們才珍貴地稱它為"黃金分割"。
黃金分割〔Golden Section〕是一種數學上的比例關係。黃金分割具有嚴格的比例性、藝術性、和諧性,蘊藏著豐富的美學價值。套用時一般取0.618 ,就像圓周率在套用時取3.14一樣。
黃金比的套用
人是自然界長期發展的產物,人體美在自然美中具有最強的完整性。英國大詩人莎士比亞在《哈姆雷特》中讚頌道:“人類是一件多么了不得的傑作!……宇宙的精華、萬物的靈長”。其實,莎士比亞也許不知道,人體相關各部分之間是符合黃金分割率的,肚臍是黃金分割線的黃金點。在軀幹部分,乳房位置的上下長度比;咽喉至頭頂和至肚臍之比;膝蓋至腳後跟和至肚臍之比等,都是黃金分割數0.618的近似數。如果人體上述部分比例均符合黃金律的話,就顯得協調勻稱。古希臘斷臂維納斯、雅典娜女神和“海姑娘”阿曼達,其體型結構比例完全符合黃金律,美妙絕倫。 科學家和藝術家普遍認為,黃金律是建築藝術必須遵循的規律。在建築造型上,人們在高塔的黃金分割點處建樓閣或設計平台,便能使平直單調的塔身變得豐富多彩;而在摩天大樓的黃金分割處布置腰線或裝飾物,則可使整個樓群顯得雄偉雅致。古代雅典的巴特農神殿,當今世界最高建築之一的加拿大多倫多電視塔,舉世聞名的法國巴黎艾菲爾鐵塔,都是根據黃金分割的原則來建造的。 在日常生活中,最和諧悅目的矩形,如電視螢幕、寫字檯面、書籍、衣服、門窗等,其短邊與長邊之比為0.618,你會因此比例協調而賞心悅目。甚至連火柴盒、國旗的長寬比例設計,都恪守0.618比值。在音樂會上,報幕員在舞台上的最佳位置,是舞台寬度的0.618之處;二胡要獲得最佳音色,其“千斤”則須放在琴弦長度的0.618處。最有趣的是,在消費領域中也可妙用0.618這個“黃金數”,獲得“物美價廉”的效果。據專家介紹,在同一商品有多個品種、多種價值情況下,將高檔價格減去低檔價格再乘以0.618,即為挑選商品的首選價格。