馮象初、甘小冰,Notes on the approximate space of cubic spline wavelet in.J.of xiandian university 1994,vol.21,No.5 (EI,ID5167004 AN2701241 IG 0422120)
馮象初等,On Wavelet based BEM for solving DDE in static field.PIERS95 ,Seattle,USA,1995
馮象初、宋國鄉,The Wavelet based method for differential and integral equation in electromagnetic problems. ASAEM96,Beijing,China,1996 Applied electromagnetics,proceeding of ASAEM96, Edited by X. s. Ma,J.S.Yuan and K.Miya.P180-186 JAPAN Society of Applied Electromagnetics and Mechanics (ISTP)
馮象初,Modification of Wavelet correction method.J.of xiandian univi.Vol.22,No.5,1995(EI,ID4162608,AN3255496,IG0454578)
對稱矩陣的圖形分解及其套用,馮象初等.
拓撲有限元的廣義逆解法, 馮象初等.
TFGM for Solving electromagnetic field problems .c.Feng etal(9,10,11的《工程科學中的數值方法及算例》,電子工業出版,1992年1月)
Discussion on sparse representation of integral equation by wavelet, 宋國鄉、馮象初.第一屆東亞計算數學研討會,烏魯木齊,中國,1996
Cubic Spline Wavelet in and the multiresolution, Xiaobing Gan, Xiangchi.Feng and chen Xu . PIERS 1997,Cetg university of HongKong,Jan,1997
FengxiangchuXuchenHigh accuracy Nonlinear Model for flexible Robot with optimal shape function.《西北大學學報》,非線性科學研究專輯,1996,10(西安)中國科學文摘錄入
Xu chen,FengXiangchu.Multiwavelet Method for Hmmerstein Equation.Chinese J.of Electronics (電子學報,英文版) vol.8,No.2,April 1999,P178-180 EI Monthly :EIP 99064696121,DIALOG No:05297306
應益榮、馮象初,多質點彈性體系的小波變換.《西安公路交通大學學報》,2000,4
馮象初、付瑜,兩點邊值問題的區間小波Galerkin方法.《西安電子科技大學學報》,2000.5期
馮象初等,邊界曲線積分方程的小波方法.《計算數學》,2002.1期P21-26
付瑜、馮象初、徐國華,鑽頭不同磨損期振動信號的分維特徵.《西安電子科技大學學報》,2001.2期
Yuan Y.Tang, X.C.Feng. “ A Wavelet-based Approach to Harmonic Transformation”. Fifth International Conference organized by AFA-SMAI Curves and Surfaces, June 27-July3,2002,Saint-Malo,France
Y.Y.Tang,X.C.Feng. “Geometric Transformation by Moment with Wavelet Matrix Series in machine perception artificial intelligence”.Vol.5,In “Soft Computing approach to pattern recognition ang image processing”,Ed.Ashish Ghosh,Sankar K.Pal.2002,World Science Press,PP.145-162
L.Wang,Y.Y.Tang andX.C.Feng,“Distributed Character Fusion by Wavelet Transformation”.International Conference on Machine Learning and Cybernetics,4-5 November 2002, Beijing,china.EI
Y.Y.Tang,X.C.Feng,“A Novel Method for Harmonic Geometric Transformation Model Based on Wavelet Collocation”.ICPR-02,Canada,2002,Quebec,August,11-15, International Conference on Patter Recognition
X.C.Feng,Y.Y.Tang,G.X.Song. “Multiwavelet Based Differentiation Matrix with Absorbed Boundary Conditions”.Proceeding of ICWAA 2003,World Science Press,PP.676-681, EI: BN981-238-342-5 BP 676 EP 681 ISTP:
X.C.Feng etal,“Storage Algorithm for Wavelet Galerkin Method”.Proceeding of the second conference on machine learning and cybernetics,Vol.4,PP.2365-2369 EI:
X.C.Feng,G.X.Song,Y.Y.Tang.“Multiwavelet Based Differentiation matrix and Adaptive Solers for the Bounding Problems”.nternational Journal of Wavelets,Multiresolution and information processing (IJWMIP),2004.
Tan Shan,Licheng Jiao and Xiangchu Feng.Ridgelet Frame. in "Image Analysis and Recognition:International Conference",ICIAR,2004,Proceedings,PART Ⅱ,Porto,Portugal,Sept.29-Oct.1,2004.Springer.P476-479
馮象初、白鍵、王軍峰, Wavelet Method for the Numerical Solution of First Kind Integral Equation. Advances in Information & Computational Science ,P177-181,Press of Univ of Science and Technology of China. ISTP:000231286500162
李敏、馮象初、張華,AMSS Model and Wavelet-Based Affine Invariant Method. Proceedings of the 6th International Prpgress on Wavelet Analysis and Active Media Technology.Vol.2,P.1038-1044,2005
楊永東、馮象初, A New Watermarking Method Based on DWT. CIS05 Inte. Conference on Computational Intel and Secu.
2. Soft Computing approach to pattern recognition and image processing,Chap.8 Geometric Transformation by moment method with wavelet matrix.Y.Y.Tang,X.C.Feng ,Lu Sun and Ling Wang.World Scientific Press.Singapore.2002